Skip to main content

Advertisement

Log in

GABA-B1 Receptor-Null Schwann Cells Exhibit Compromised In Vitro Myelination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

GABA-B receptors are important for Schwann cell (SC) commitment to a non-myelinating phenotype during development. However, the P0-GABA-B1fl/fl conditional knockout mice, lacking the GABA-B1 receptor specifically in SCs, also presented axon modifications, suggesting SC non-autonomous effects through the neuronal compartment. In this in vitro study, we evaluated whether the specific deletion of the GABA-B1 receptor in SCs may induce autonomous or non-autonomous cross-changes in sensory dorsal root ganglia (DRG) neurons. To this end, we performed an in vitro biomolecular and transcriptomic analysis of SC and DRG neuron primary cultures from P0-GABA-B1fl/fl mice. We found that cells from conditional P0-GABA-B1fl/fl mice exhibited proliferative, migratory and myelinating alterations. Moreover, we found transcriptomic changes in novel molecules that are involved in peripheral neuron–SC interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Faroni A, Castelnovo LF, Procacci P, Caffino L, Fumagalli F, Melfi S, Gambarotta G, Bettler B et al (2014) Deletion of GABA-B receptor in Schwann cells regulates Remak bundles and small nociceptive C-fibers. GLIA 62(4):548–565

    PubMed  Google Scholar 

  2. Magnaghi V, Parducz A, Frasca A, Ballabio M, Procacci P, Racagni G, Bonanno G, Fumagalli F (2010) GABA synthesis in Schwann cells is induced by the neuroactive steroid allopregnanolone. J Neurochem 112(4):980–990

    CAS  PubMed  Google Scholar 

  3. Perego C, Di Cairano ES, Ballabio M, Magnaghi V (2012) Neurosteroid allopregnanolone regulates EAAC1-mediated glutamate uptake and triggers actin changes in Schwann cells. J Cell Physiol 227(4):1740–1751

    CAS  PubMed  Google Scholar 

  4. Faroni A, Terenghi G, Magnaghi V (2012) Expression of functional gamma-aminobutyric acid type a receptors in Schwann-like adult stem cells. J Mol Neurosci 47(3):619–630

    CAS  PubMed  Google Scholar 

  5. Faroni A, Calabrese F, Riva MA, Terenghi G, Magnaghi V (2012) Baclofen modulates the expression and release of neurotrophins in Schwann-like adipose stem cells. J Mol Neurosci

  6. Procacci P, Ballabio M, Castelnovo LF, Mantovani C, Magnaghi V (2012) GABA-B receptors in the PNS have a role in Schwann cells differentiation? Front Cell Neurosci 6:68

    PubMed  Google Scholar 

  7. Magnaghi V, Procacci P, Tata AM (2009) Chapter 15: Novel pharmacological approaches to Schwann cells as neuroprotective agents for peripheral nerve regeneration. Int Rev Neurobiol 87:295–315

    CAS  PubMed  Google Scholar 

  8. Magnaghi V, Ballabio M, Camozzi F, Colleoni M, Consoli A, Gassmann M, Lauria G, Motta M et al (2008) Altered peripheral myelination in mice lacking GABAB receptors. Mol Cell Neurosci 37(3):599–609

    CAS  PubMed  Google Scholar 

  9. Corell M, Wicher G, Radomska KJ, Daglikoca ED, Godskesen RE, Fredriksson R, Benedikz E, Magnaghi V et al (2015) GABA and its B-receptor are present at the node of Ranvier in a small population of sensory fibers, implicating a role in myelination. J Neurosci Res 93(2):285–295

    PubMed  Google Scholar 

  10. Magnaghi V, Castelnovo LF, Faroni A, Cavalli E, Caffino L, Colciago A, Procacci P, Pajardi G (2014) Nerve regenerative effects of GABA-B ligands in a model of neuropathic pain. Biomed Res Int 2014:368678

    PubMed  PubMed Central  Google Scholar 

  11. Haller C, Casanova E, Muller M, Vacher CM, Vigot R, Doll T, Barbieri S, Gassmann M et al (2004) Floxed allele for conditional inactivation of the GABAB(1) gene. Genesis 40(3):125–130

    CAS  PubMed  Google Scholar 

  12. Feltri ML, D'Antonio M, Previtali S, Fasolini M, Messing A, Wrabetz L (1999) P0-Cre transgenic mice for inactivation of adhesion molecules in Schwann cells. Ann N Y Acad Sci 883:116–123

    CAS  PubMed  Google Scholar 

  13. de Luca AC, Faroni A, Reid AJ (2015) Dorsal root ganglia neurons and differentiated adipose-derived stem cells: an in vitro co-culture model to study peripheral nerve regeneration. J Vis Exp (96).

  14. Melfi S, Montt Guevara MM, Bonalume V, Ruscica M, Colciago A, Simoncini T, Magnaghi V (2017) Src and phospho-FAK kinases are activated by allopregnanolone promoting Schwann cell motility, morphology and myelination. J Neurochem 141(2):165–178

    CAS  PubMed  Google Scholar 

  15. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45–e445

    Google Scholar 

  16. Magnaghi V, Ballabio M, Roglio I, Melcangi RC (2007) Progesterone derivatives increase expression of Krox-20 and Sox-10 in rat Schwann cells. J Mol Neurosci 31(2):149–157

    CAS  PubMed  Google Scholar 

  17. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31(4):e15–e115

    Google Scholar 

  18. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    CAS  Google Scholar 

  19. Lawson SN (1992) Morphological and biochemical cell types of sensory neurons. Sensory neurons: diversity, development and plasticity. Oxford University Press Inc., New York.

    Google Scholar 

  20. Yamada H, Komiyama A, Suzuki K (1995) Schwann cell responses to forskolin and cyclic AMP analogues: comparative study of mouse and rat Schwann cells. Brain Res 681(1–2):97–104

    CAS  PubMed  Google Scholar 

  21. Gokey NG, Srinivasan R, Lopez-Anido C, Krueger C, Svaren J (2012) Developmental regulation of microRNA expression in Schwann cells. Mol Cell Biol 32(2):558–568

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, Hoang T, Xu X et al (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65(5):612–626

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW (2009) Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci 29(41):12757–12763

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fritschy JM, Panzanelli P (2014) GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 39(11):1845–1865

    PubMed  Google Scholar 

  25. Melcangi RC, Magnaghi V, Cavarretta I, Zucchi I, Bovolin P, D'Urso D, Martini L (1999) Progesterone derivatives are able to influence peripheral myelin protein 22 and P0 gene expression: possible mechanisms of action. J Neurosci Res 56(4):349–357

    CAS  PubMed  Google Scholar 

  26. Iacovelli J, Lopera J, Bott M, Baldwin E, Khaled A, Uddin N, Fernandez-Valle C (2007) Serum and forskolin cooperate to promote G1 progression in Schwann cells by differentially regulating cyclin D1, cyclin E1, and p27Kip expression. Glia 55(16):1638–1647

    PubMed  Google Scholar 

  27. Rahmatullah M, Schroering A, Rothblum K, Stahl RC, Urban B, Carey DJ (1998) Synergistic regulation of Schwann cell proliferation by heregulin and forskolin. Mol Cell Biol 18(11):6245–6252

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Han D, Choi MR, Jung KH, Kim N, Kim SK, Chai JC, Lee YS, Chai YG (2015) Global transcriptome profiling of genes that are differentially regulated during differentiation of mouse embryonic neural stem cells into astrocytes. J Mol Neurosci 55(1):109–125

    CAS  PubMed  Google Scholar 

  29. Braunewell KH, Pesheva P, McCarthy JB, Furcht LT, Schmitz B, Schachner M (1995) Functional involvement of sciatic nerve-derived versican- and decorin-like molecules and other chondroitin sulphate proteoglycans in ECM-mediated cell adhesion and neurite outgrowth. Eur J Neurosci 7(4):805–814

    CAS  PubMed  Google Scholar 

  30. Werle MJ (2008) Cell-to-cell signaling at the neuromuscular junction: the dynamic role of the extracellular matrix. Ann N Y Acad Sci 1132:13–18

    CAS  PubMed  Google Scholar 

  31. Terauchi A, Johnson-Venkatesh EM, Toth AB, Javed D, Sutton MA, Umemori H (2010) Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature 465(7299):783–787

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bremer J, O'Connor T, Tiberi C, Rehrauer H, Weis J, Aguzzi A (2010) Ablation of dicer from murine Schwann cells increases their proliferation while blocking myelination. PLoS One 5(8):e12450

    PubMed  PubMed Central  Google Scholar 

  33. Pereira JA, Baumann R, Norrmen C, Somandin C, Miehe M, Jacob C, Luhmann T, Hall-Bozic H et al (2010) Dicer in Schwann cells is required for myelination and axonal integrity. J Neurosci 30(19):6763–6775

    CAS  PubMed  Google Scholar 

  34. Yun B, Anderegg A, Menichella D, Wrabetz L, Feltri ML, Awatramani R (2010) MicroRNA-deficient Schwann cells display congenital hypomyelination. J Neurosci 30(22):7722–7728

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Svaren J (2014) MicroRNA and transcriptional crosstalk in myelinating glia. Neurochem Int 77:50–57

    CAS  PubMed  Google Scholar 

  36. Magnaghi V, Ballabio M, Consoli A, Lambert JJ, Roglio I, Melcangi RC (2006) GABA receptor-mediated effects in the peripheral nervous system: a cross-interaction with neuroactive steroids. J Mol Neurosci 28(1):89–102

    CAS  PubMed  Google Scholar 

  37. Arellano RO, Sanchez-Gomez MV, Alberdi E, Canedo-Antelo M, Chara JC, Palomino A, Perez-Samartin A, Matute C (2016) Axon-to-glia interaction regulates GABAA receptor expression in oligodendrocytes. Mol Pharmacol 89(1):63–74

    CAS  PubMed  Google Scholar 

  38. Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(a) receptor. Nat Rev Neurosci 6(7):565–575

    CAS  PubMed  Google Scholar 

  39. Wright R, Newey SE, Ilie A, Wefelmeyer W, Raimondo JV, Ginham R, McLlhinney RAJ, Akerman CJ (2017) Neuronal chloride regulation via KCC2 is modulated through a GABAB receptor protein complex. J Neurosci 37(22):5447–5462

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Faroni A, Magnaghi V (2011) The neurosteroid allopregnanolone modulates specific functions in central and peripheral glial cells. Front Endocrinol (Lausanne) 2:103

    Google Scholar 

  41. Ma W, Saunders PA, Somogyi R, Poulter MO, Barker JL (1993) Ontogeny of GABAA receptor subunit mRNAs in rat spinal cord and dorsal root ganglia. J Comp Neurol 338(3):337–359

    CAS  PubMed  Google Scholar 

  42. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413(6852):203–210

    CAS  PubMed  Google Scholar 

  43. Obata K, Yamanaka H, Fukuoka T, Yi D, Tokunaga A, Hashimoto N, Yoshikawa H, Noguchi K (2003) Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain 101(1–2):65–77

    CAS  PubMed  Google Scholar 

  44. Obradovic AL, Scarpa J, Osuru HP, Weaver JL, Park JY, Pathirathna S, Peterkin A, Lim Y et al (2015) Silencing the alpha2 subunit of gamma-aminobutyric acid type a receptors in rat dorsal root ganglia reveals its major role in antinociception posttraumatic nerve injury. Anesthesiology 123(3):654–667

    PubMed  PubMed Central  Google Scholar 

  45. Carver CM, Reddy DS (2013) Neurosteroid interactions with synaptic and extrasynaptic GABA(a) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology 230(2):151–188

    CAS  PubMed  Google Scholar 

  46. Bonin RP, Labrakakis C, Eng DG, Whissell PD, De Koninck Y, Orser BA (2011) Pharmacological enhancement of delta-subunit-containing GABA(a) receptors that generate a tonic inhibitory conductance in spinal neurons attenuates acute nociception in mice. Pain 152(6):1317–1326

    CAS  PubMed  Google Scholar 

  47. Dutsch M, Marthol H, Stemper B, Brys M, Haendl T, Hilz MJ (2002) Small fiber dysfunction predominates in Fabry neuropathy. J Clin Neurophysiol 19(6):575–586

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Astrid Williams for proofreading and Marinella Ballabio for technical support.

Funding

This work was supported by a grant from MIUR ‘Progetto Eccellenza’ and institutional grant from Università degli Studi di Milano (to V.M.); by grants from the Ministry of Economy and Competitiveness, Spain, MINECO BFU 2016-7798-P; and from Diputación Foral de Gipuzkoa, Spain DFG15/15 and DFG141/16 (to M.J.A.-B.).

Author information

Authors and Affiliations

Authors

Contributions

A.F. performed animal crossing, genotyping and culture set-up; he also performed IIC; S.M. performed cell biology experiments (proliferation, migration, etc.); V.B. and D.C. set up the co-culture experiments; L.F.C. performed GABA-A qRT-PCRs; P.M. participated in the transcriptomic analysis; M.J.A-B. and R.R. performed transcriptomic in silico analysis and statistics; V.M. supervised all experiments and wrote the manuscript with A.F.

Corresponding author

Correspondence to Valerio Magnaghi.

Ethics declarations

All animal experiments were conducted in accordance with the European Communities Council Directive (2010/63) and were approved by the local ethical committee of the University of Milan.

Conflict of Interest

The authors have no other relevant affiliations or financial involvements with any organisation or entity with a financial interest in or financial conflict with the subjects discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faroni, A., Melfi, S., Castelnovo, L.F. et al. GABA-B1 Receptor-Null Schwann Cells Exhibit Compromised In Vitro Myelination. Mol Neurobiol 56, 1461–1474 (2019). https://doi.org/10.1007/s12035-018-1158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1158-x

Keywords

Navigation