Skip to main content

Advertisement

Log in

Secretome of Differentiated PC12 Cells Enhances Neuronal Differentiation in Human Mesenchymal Stem Cells Via NGF-Like Mechanism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The secretome-mediated responses over cellular physiology are well documented. Stem cells have been ruling the field of secretomics and its role in regenerative medicine since the past few years. However, the mechanistic aspects of secretome-mediated responses and the role of other cells in this area remain somewhat elusive. Here, we investigate the effects of secretome-enriched conditioned medium (CM) of neuronally differentiated PC12 cells on the neuronal differentiation of human mesenchymal stem cells (hMSCs). The exposure to CM at a ratio of 1:1 (CM: conditioned medium of PC12 cells) led to neuronal induction in hMSCs. This neuronal induction was compared with a parallel group of cells exposed to nerve growth factor (NGF). There was a marked increase in neurite length and expression of neuronal markers (β-III tubulin, neurofilament-M (NF-M), synaptophysin, NeuN in exposed hMSCs). Experimental group co-exposed to NGF and CM showed an additive response via MAPK signaling and directed the cells particularly towards cholinergic lineage. The ability of CM to enhance the neuronal properties of stem cells could aid in their rapid differentiation into neuronal subtypes in case of stem cell transplantation for neuronal injuries, thus broadening the scope of non-stem cell-based applications in the area of secretomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64(3):515–547

    Article  CAS  Google Scholar 

  2. Karagiannis GS, Pavlou MP, Diamandis EP (2010) Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Mol Oncol 4(6):496–510

    Article  CAS  Google Scholar 

  3. Garg G, Ranganathan S (2011) In silico secretome analysis approach for next generation sequencing transcriptomic data. BMC Genomics 12(3):S14

    Article  CAS  Google Scholar 

  4. Barderas R, Mendes M, Torres S, Bartolomé RA, López-Lucendo M, Villar-Vázquez R, Peláez-García A, Fuente E et al (2013) In-depth characterization of the secretome of colorectal cancer metastatic cells identifies key proteins in cell adhesion, migration, and invasion. Mol Cell Proteomics 12(6):1602–1620

    Article  CAS  Google Scholar 

  5. Ditgen D, Anandarajah EM, Meissner KA, Brattig N, Wrenger C, Liebau E (2014) Harnessing the helminth secretome for therapeutic immunomodulators. BioMed Research International 2014, Article ID 964350

  6. Kawahara R, Lima RN, Domingues RR, Pauletti BA, Meirelles GV, Assis M, Figueira ACM, Leme AFP (2014) Deciphering the role of the ADAM17-dependent secretome in cell signaling. J Proteome Res 13(4):2080–2093

    Article  CAS  Google Scholar 

  7. Jha MK, Seo M, Kim J-H, Kim B-G, Cho J-Y, Suk K (2013) The secretome signature of reactive glial cells and its pathological implications. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1834(11):2418–2428

    Article  CAS  Google Scholar 

  8. Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noël A, Brook G, Schoenen J et al (2013) Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One 8(8):e69515

    Article  CAS  Google Scholar 

  9. Dowling P, Clynes M (2011) Conditioned media from cell lines: a complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics 11(4):794–804

    Article  CAS  Google Scholar 

  10. Teixeira FG, Carvalho MM, Panchalingam KM, Rodrigues AJ, Mendes-Pinheiro B, Anjo S, Manadas B, Behie LA et al (2017) Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinson’s disease. Stem Cells Transl Med 6(2):634–646

    Article  CAS  Google Scholar 

  11. Ribeiro CA, Fraga JS, Grãos M, Neves NM, Reis RL, Gimble JM, Sousa N, Salgado AJ (2012) The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther 3(3):18

    Article  CAS  Google Scholar 

  12. Chang C-P, Chio C-C, Cheong C-U, Chao C-M, Cheng B-C, Lin M-T (2013) Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci 124(3):165–176

    Article  CAS  Google Scholar 

  13. Salgado AJ, Sousa JC, Costa BM, Pires AO, Mateus-Pinheiro A, Teixeira F, Pinto L, Sousa N (2015) Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci 9:249

    Article  Google Scholar 

  14. Gemma C, Bachstetter AD (2013) The role of microglia in adult hippocampal neurogenesis. Front Cell Neurosci 7:229

    Article  Google Scholar 

  15. Glavaski-Joksimovic A (2014) The mesenchymal stem cell secretome: implications for treatment of traumatic brain injury. Spine 2(1):1007

    Google Scholar 

  16. Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: insights into the secretome. Biochim Biophy Acta (BBA)-Proteins and Proteomics 1834(11):2380–2384

    Article  CAS  Google Scholar 

  17. Agrawal M, Kumar V, Singh AK, Kashyap MP, Khanna VK, Siddiqui MA, Pant AB (2012) Trans-resveratrol protects ischemic PC12 cells by inhibiting the hypoxia associated transcription factors and increasing the levels of antioxidant defense enzymes. ACS Chem Neurosci 4(2):285–294

    Article  Google Scholar 

  18. Sadri S, Khazaei M, Ghanbari A, Khazaei MR, Shah P (2014) Neuronal differentiation of PC12 and embryonic stem cells in two-and three-dimensional in vitro culture. Indian J Exp Biol 52(4):305–311

    CAS  PubMed  Google Scholar 

  19. Siddiqui M, Kashyap M, Khanna V, Yadav S, Pant A (2010) NGF induced differentiated PC12 cells as in vitro tool to study 4-hydroxynonenal induced cellular damage. Toxicol in Vitro 24(6):1681–1688

    Article  CAS  Google Scholar 

  20. Taupenot L (2007) Analysis of regulated secretion using PC12 cells. Curr Prot in Cell Biol:15–12

  21. Vazquez-Martinez R, Almabouada F, Rabanal Y, Diaz-Ruiz A, Garcia-Navarro S, Malagon MM (2013) The small GTPase Rab18 modulates neuroendocrine secretion by interacting with components of the microtubule-based secretory granule transport machinery. Endocr Abstr 32:P683

    Google Scholar 

  22. Kashyap M, Singh A, Siddiqui M, Kumar V, Tripathi V, Khanna V, Yadav S, Jain S et al (2010) Caspase cascade regulated mitochondria mediated apoptosis in monocrotophos exposed PC12 cells. Chem Res Toxicol 23(11):1663–1672

    Article  CAS  Google Scholar 

  23. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  Google Scholar 

  24. Kumar V, Tripathi VK, Singh AK, Lohani M, Kuddus M (2013) Trans-resveratrol restores the damages induced by organophosphate pesticide-monocrotophos in neuronal cells. Toxicol Int 20(1):48–55

    Article  Google Scholar 

  25. Jahan S, Kumar D, Kumar A, Rajpurohit CS, Singh S, Srivastava A, Pandey A, Pant A (2017) Neurotrophic factor mediated neuronal differentiation of human cord blood mesenchymal stem cells and their applicability to assess the developmental neurotoxicity. Biochem Biophys Res Commun 482(4):961–967

    Article  CAS  Google Scholar 

  26. Lee W-C, Chen Y-Y, Kan D, Chien C-L (2012) A neuronal death model: overexpression of neuronal intermediate filament protein peripherin in PC12 cells. J Biomed Sci 19(1):8

    Article  CAS  Google Scholar 

  27. Zhu G, Sun L, Keithley RB, Dovichi NJ (2013) Capillary isoelectric focusing-tandem mass spectrometry and reversed-phase liquid chromatography-tandem mass spectrometry for quantitative proteomic analysis of differentiating PC12 cells by eight-plex isobaric tags for relative and absolute quantification. Anal Chem 85(15):7221–7229

    Article  CAS  Google Scholar 

  28. Muñoz-Elías G, Woodbury D, Black IB (2003) Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 21(4):437–448

    Article  Google Scholar 

  29. Tsai H-L, Deng W-P, Lai W-FT, Chiu W-T, Yang C-B, Tsai Y-H, Hwang S-M, Renshaw PF (2014) Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. PLoS One 9(8):e104937

    Article  Google Scholar 

  30. Pires AO, Neves-Carvalho A, Sousa N, Salgado AJ (2014) The secretome of bone marrow and Wharton jelly derived mesenchymal stem cells induces differentiation and neurite outgrowth in SH-SY5Y cells. Stem Cells Int 2014, Article ID 438352

  31. Hsieh J-Y, Wang H-W, Chang S-J, Liao K-H, Lee I-H, Lin W-S, Wu C-H, Lin W-Y et al (2013) Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 8(8):e72604

    Article  CAS  Google Scholar 

  32. Yamamoto H, Demura T, Morita M, Banker GA, Tanii T, Nakamura S (2012) Differential neurite outgrowth is required for axon specification by cultured hippocampal neurons. J Neurochem 123(6):904–910

    Article  CAS  Google Scholar 

  33. Tzeng H-H, Hsu C-H, Chung T-H, Lee W-C, Lin C-H, Wang W-C, Hsiao C-Y, Leu Y-W et al (2015) Cell signaling and differential protein expression in neuronal differentiation of bone marrow mesenchymal stem cells with hypermethylated Salvador/Warts/Hippo (SWH) pathway genes. PLoS One 10(12):e0145542

    Article  Google Scholar 

  34. Xiong Z, Zhao S, Mao X, Lu X, He G, Yang G, Chen M, Ishaq M et al (2014) Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation. Stem Cell Res 12(2):387–399

    Article  CAS  Google Scholar 

  35. Montzka K, Lassonczyk N, Tschöke B, Neuss S, Führmann T, Franzen R, Smeets R, Brook GA et al (2009) Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neurosci 10(1):16

    Article  Google Scholar 

  36. Faigle R, Song H (2013) Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophy Acta-Gen Subj 1830(2):2435–2448

    Article  CAS  Google Scholar 

  37. Nguyen L, Rigo J-M, Rocher V, Belachew S, Malgrange B, Rogister B, Leprince P, Moonen G (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res 305(2):187–202

    Article  CAS  Google Scholar 

  38. Hyman SE (2005) Neurotransmitters. Curr Biol 15(5):R154–R158

    Article  CAS  Google Scholar 

  39. Foster AC, Kemp JA (2006) Glutamate-and GABA-based CNS therapeutics. Curr Opin Pharmacol 6(1):7–17

    Article  CAS  Google Scholar 

  40. Hangya B, Ranade SP, Lorenc M, Kepecs A (2015) Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162(5):1155–1168

    Article  CAS  Google Scholar 

  41. Hynes M, Porter JA, Chiang C, Chang D, Tessier-Lavigne M, Beachy PA, Rosenthal A (1995) Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15(1):35–44

    Article  CAS  Google Scholar 

  42. Kanunnikova NP (2012) Role of brain glutamic acid metabolism changes in neurodegenerative pathologies. J Biol Earth Sci 2012 2(1):10

    Google Scholar 

  43. Kegeles LS (2016) Brain GABA function and psychosis. Am J Psychiatr 173(5):448–449

    Article  Google Scholar 

  44. Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, Hwang D-R, Huang Y et al (2010) Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry 67(3):231–239

    Article  CAS  Google Scholar 

  45. Moret C, Briley M (2011) The importance of norepinephrine in depression. Neuropsychiatr Dis Treat 7(Suppl 1):9–13

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Pawełczyk T, Ronowska A (2013) Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem Res 38(8):1523–1542

    Article  CAS  Google Scholar 

  47. Liang J, Wu S, Zhao H, Li S-l, Liu Z-x, Wu J, Zhou L (2013) Human umbilical cord mesenchymal stem cells derived from Wharton’s jelly differentiate into cholinergic-like neurons in vitro. Neurosci Lett 532:59–63

    Article  CAS  Google Scholar 

  48. Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol 37(5):942–946

    Article  CAS  Google Scholar 

  49. Campos-Peña V, Meraz-Ríos MA (2014) Alzheimer disease: the role of Aβ in the glutamatergic system. In: Neurochemistry. InTech. https://doi.org/10.5772/57367

    Google Scholar 

  50. Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10(3):244–258

    Article  CAS  Google Scholar 

  51. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72(1):609–642

    Article  CAS  Google Scholar 

  52. Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci 98(6):3555–3560

    Article  CAS  Google Scholar 

  53. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  CAS  Google Scholar 

  54. Houslay MD, Kolch W (2000) Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol Pharmacol 58(4):659–668

    Article  CAS  Google Scholar 

  55. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76(1):1–10

    Article  CAS  Google Scholar 

  56. Oeztuerk-Winder F, Ventura J-J (2012) The many faces of p38 mitogen-activated protein kinase in progenitor/stem cell differentiation. Biochem J 445(1):1–10

    Article  CAS  Google Scholar 

  57. Chen F (2012) JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res 72(2):379–386

    Article  CAS  Google Scholar 

  58. Kumar V, Gupta AK, Shukla RK, Tripathi VK, Jahan S, Pandey A, Srivastava A, Agrawal M et al (2015) Molecular mechanism of switching of TrkA/p75NTR signaling in monocrotophos induced neurotoxicity. Sci Rep 5:14038

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Pant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Singh, S., Pandey, A. et al. Secretome of Differentiated PC12 Cells Enhances Neuronal Differentiation in Human Mesenchymal Stem Cells Via NGF-Like Mechanism. Mol Neurobiol 55, 8293–8305 (2018). https://doi.org/10.1007/s12035-018-0981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0981-4

Keywords

Navigation