Skip to main content

Advertisement

Log in

Down Syndrome iPSC-Derived Astrocytes Impair Neuronal Synaptogenesis and the mTOR Pathway In Vitro

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several methods have been used to study the neuropathogenesis of Down syndrome (DS), such as mouse aneuploidies, post mortem human brains, and in vitro cell culture of neural progenitor cells. More recently, induced pluripotent stem cell (iPSC) technology has offered new approaches in investigation, providing a valuable tool for studying specific cell types affected by DS, especially neurons and astrocytes. Here, we investigated the role of astrocytes in DS developmental disease and the impact of the astrocyte secretome in neuron mTOR signaling and synapse formation using iPSC derived from DS and wild-type (WT) subjects. We demonstrated for the first time that DS neurons derived from hiPSC recapitulate the hyperactivation of the Akt/mTOR axis observed in DS brains and that DS astrocytes may play a key role in this dysfunction. Our results bear out that 21 trisomy in astrocytes contributes to neuronal abnormalities in addition to cell autonomous dysfunctions caused by 21 trisomy in neurons. Further research in this direction will likely yield additional insights, thereby improving our understanding of DS and potentially facilitating the development of new therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Starbuck JM (2011) On the antiquity of trisomy 21: moving towards a quantitative diagnosis of Down syndrome in historic material culture. scholarworks.iupui.edu

  2. Lott IT, Head E (2001) Down syndrome and Alzheimer’s disease: a link between development and aging. Ment Retard Dev Disabil Res Rev 7:172–178. https://doi.org/10.1002/mrdd.1025

    Article  PubMed  CAS  Google Scholar 

  3. Araujo BH, Torres LB, Guilhoto LM (2015) Cerebal overinhibition could be the basis for the high prevalence of epilepsy in persons with Down syndrome. Epilepsy Behav 53:120–125. https://doi.org/10.1016/j.yebeh.2015.10.004

    Article  PubMed  Google Scholar 

  4. Arya R, Kabra M, Gulati S (2011) Epilepsy in children with Down syndrome. Epileptic Disord 13:1–7. https://doi.org/10.1684/epd.2011.0415

    Article  PubMed  Google Scholar 

  5. Smigielska-Kuzia J, Sobaniec W, Kułak W, Boćkowski L (2009) Clinical and EEG features of epilepsy in children and adolescents in Down syndrome. J Child Neurol 24:416–420. https://doi.org/10.1177/0883073808324542

    Article  PubMed  Google Scholar 

  6. Chakrabarti L, Best TK, Cramer NP, Carney RS, Isaac JT, Galdzicki Z, Haydar TF (2010) Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat Neurosci 13:927–934. https://doi.org/10.1038/nn.2600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Becker L, Mito T, Takashima S, Onodera K (1991) Growth and development of the brain in Down syndrome. Prog Clin Biol Res 373:133–152

    PubMed  CAS  Google Scholar 

  8. Haydar TF (2005) Advanced microscopic imaging methods to investigate cortical development and the etiology of mental retardation. Ment Retard Dev Disabil Res Rev 11:303–316. https://doi.org/10.1002/mrdd.20088

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen C, Jiang P, Xue H, Peterson SE, Tran HT, McCann AE, Parast MM, Li S et al (2014) Role of astroglia in Down’s syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat Commun 5:4430. https://doi.org/10.1038/ncomms5430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. HE L, Yang YC, Chen SM, HL S, Huang PC, Tsai MS, Wang TH, Tseng CP et al (2013) Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from Trisomy 21 amniotic fluid cells. Exp Cell Res 319:498–505. https://doi.org/10.1016/j.yexcr.2012.09.017

    Article  CAS  Google Scholar 

  11. Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23:744–755. https://doi.org/10.1016/j.ceb.2011.09.003

    Article  PubMed  CAS  Google Scholar 

  12. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wong M (2013) Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biom J 36:40–50. https://doi.org/10.4103/2319-4170.110365

    Article  Google Scholar 

  14. Orlova KA, Crino PB (2010) The tuberous sclerosis complex. Ann N Y Acad Sci 1184:87–105. https://doi.org/10.1111/j.1749-6632.2009.05117.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN et al (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–651. https://doi.org/10.1038/nature11310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Iyer AM, van Scheppingen J, Milenkovic I, Anink JJ, Adle-Biassette H, Kovacs GG, Aronica E (2014) mTOR Hyperactivation in down syndrome hippocampus appears early during development. J Neuropathol Exp Neurol 73:671–683. https://doi.org/10.1097/NEN.0000000000000083

    Article  PubMed  CAS  Google Scholar 

  17. Perluigi M, Pupo G, Tramutola A, Cini C, Coccia R, Barone E, Head E, Butterfield DA et al (2014) Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim Biophys Acta 1842:1144–1153. https://doi.org/10.1016/j.bbadis.2014.04.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Troca-Marín JA, Alves-Sampaio A, Montesinos ML (2011) An increase in basal BDNF provokes hyperactivation of the Akt-mammalian target of rapamycin pathway and deregulation of local dendritic translation in a mouse model of Down’s syndrome. J Neurosci 31:9445–9455. https://doi.org/10.1523/JNEUROSCI.0011-11.2011

    Article  PubMed  CAS  Google Scholar 

  19. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321. https://doi.org/10.1038/nrn3484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661. https://doi.org/10.1126/science.291.5504.657

    Article  PubMed  CAS  Google Scholar 

  21. Williams EC, Zhong X, Mohamed A, Li R, Liu Y, Dong Q, Ananiev GE, Mok JC et al (2014) Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet 23:2968–2980. https://doi.org/10.1093/hmg/ddu008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kıray H, Lindsay SL, Hosseinzadeh S, Barnett SC (2016) The multifaceted role of astrocytes in regulating myelination. Exp Neurol 283:541–549. https://doi.org/10.1016/j.expneurol.2016.03.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412. https://doi.org/10.1038/nmeth.1591

    Article  PubMed  CAS  Google Scholar 

  24. Jehee FS, Takamori JT, Medeiros PF, Pordeus AC, Latini FR, Bertola DR, Kim CA, Passos-Bueno MR (2011) Using a combination of MLPA kits to detect chromosomal imbalances in patients with multiple congenital anomalies and mental retardation is a valuable choice for developing countries. Eur J Med Genet 54:e425–e432. https://doi.org/10.1016/j.ejmg.2011.03.007

    Article  PubMed  Google Scholar 

  25. de Souza JS, Carromeu C, Torres LB, Araujo BH, Cugola FR, Maciel RM, Muotri AR, Giannocco G (2017) IGF1 neuronal response in the absence of MECP2 is dependent on TRalpha 3. Hum Mol Genet 26:270–281. https://doi.org/10.1093/hmg/ddw384

    Article  PubMed  CAS  Google Scholar 

  26. Nageshappa S, Carromeu C, Trujillo CA, Mesci P, Espuny-Camacho I, Pasciuto E, Vanderhaeghen P, Verfaillie CM et al. (2016) Altered neuronal network and rescue in a human MECP2 duplication model. Mol Psychiatry 21(2):178–88. https://doi.org/10.1038/mp.2015.128

  27. Halevy T, Biancotti JC, Yanuka O, Golan-Lev T, Benvenisty N (2016) Molecular characterization of down syndrome embryonic stem cells reveals a role for RUNX1 in neural differentiation. Stem Cell Reports 7:777–786. https://doi.org/10.1016/j.stemcr.2016.08.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433. https://doi.org/10.1016/j.cell.2004.12.020

    Article  PubMed  CAS  Google Scholar 

  29. Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357. https://doi.org/10.1126/science.294.5545.1354

    Article  PubMed  CAS  Google Scholar 

  30. Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, Malenka RC, Garner CC (2007) Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 10:411–413. https://doi.org/10.1038/nn1860

    Article  PubMed  CAS  Google Scholar 

  31. Weick JP, Held DL, Bonadurer GF, Doers ME, Liu Y, Maguire C, Clark A, Knackert JA et al (2013) Deficits in human trisomy 21 iPSCs and neurons. Proc Natl Acad Sci U S A 110:9962–9967. https://doi.org/10.1073/pnas.1216575110

    Article  PubMed  PubMed Central  Google Scholar 

  32. Garcia O, Torres M, Helguera P, Coskun P, Busciglio J (2010) A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome. PLoS One 5:e14200. https://doi.org/10.1371/journal.pone.0014200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kemper TL (1991) Down syndrome. In: Peters A, Jones EG (eds) Normal and Altered States of Function. Cereb Cortex, vol 9. Springer, Boston, pp 511–526

  34. Engidawork E, Lubec G (2003) Molecular changes in fetal Down syndrome brain. J Neurochem 84:895–904

    Article  PubMed  CAS  Google Scholar 

  35. Guihard-Costa AM, Khung S, Delbecque K, Ménez F, Delezoide AL (2006) Biometry of face and brain in fetuses with trisomy 21. Pediatr Res 59:33–38. https://doi.org/10.1203/01.pdr.0000190580.88391.9a

    Article  PubMed  Google Scholar 

  36. Kassai H, Sugaya Y, Noda S, Nakao K, Maeda T, Kano M, Aiba A (2014) Selective activation of mTORC1 signaling recapitulates microcephaly, tuberous sclerosis, and neurodegenerative diseases. Cell Rep 7:1626–1639. https://doi.org/10.1016/j.celrep.2014.04.048

    Article  PubMed  CAS  Google Scholar 

  37. Gómez-Casati ME, Murtie JC, Rio C, Stankovic K, Liberman MC, Corfas G (2010) Nonneuronal cells regulate synapse formation in the vestibular sensory epithelium via erbB-dependent BDNF expression. Proc Natl Acad Sci U S A 107:17005–17010. https://doi.org/10.1073/pnas.1008938107

    Article  PubMed  PubMed Central  Google Scholar 

  38. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:410–414. https://doi.org/10.1038/nature11059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Farías GG, Alfaro IE, Cerpa W, Grabowski CP, Godoy JA, Bonansco C, Inestrosa NC (2009) Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J Biol Chem 284:15857–15866. https://doi.org/10.1074/jbc.M808986200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Weston MC, Chen H, Swann JW (2012) Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission. J Neurosci 32:11441–11452. https://doi.org/10.1523/JNEUROSCI.1283-12.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M et al (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100–104. https://doi.org/10.1038/nature15376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Demirci S, Doğan A, Apdik H, Tuysuz EC, Gulluoglu S, Bayrak OF, Şahin F (2017) Cytoglobin inhibits migration through PI3K/AKT/mTOR pathway in fibroblast cells. Mol Cell Biochem. https://doi.org/10.1007/s11010-017-3101-2

  43. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129. https://doi.org/10.1038/nrc2780

    Article  PubMed  CAS  Google Scholar 

  44. Midorikawa Y, Ishikawa S, Iwanari H, Imamura T, Sakamoto H, Miyazono K, Kodama T, Makuuchi M et al (2003) Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling. Int J Cancer 103:455–465. https://doi.org/10.1002/ijc.10856

    Article  PubMed  CAS  Google Scholar 

  45. Maiese K (2015) Neuronal activity, mitogens, and mTOR: overcoming the hurdles for the treatment of glioblastoma multiforme. J Transl Sci 1:2

    PubMed  PubMed Central  Google Scholar 

  46. Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW et al (2015) Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161:803–816. https://doi.org/10.1016/j.cell.2015.04.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhou J, Su P, Wang L, Chen J, Zimmermann M, Genbacev O, Afonja O, Horne MC et al (2009) mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci U S A 106:7840–7845. https://doi.org/10.1073/pnas.0901854106

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Centros de Pesquisa, Inovação e Difusão (CEPID), number 2013/08028-1). Bruno H. S. Araujo, Ernesto Goulart, and Luiz C. J. Caires are fellows of FAPESP (2014/08049-1; 2015/14821-1; 2017/16283-2); Carolini Kaid and Camila M. Musso are fellows of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; 1469761; 1470032); Janaina S. de Souza is a fellow of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; 18952-12-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno H. S. Araujo.

Ethics declarations

Conflict of Interest

The author(s) declare(s) that there is no conflict of interest regarding the publication of this article.

Electronic Supplementary Material

ESM 1

(DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, B.H.S., Kaid, C., De Souza, J.S. et al. Down Syndrome iPSC-Derived Astrocytes Impair Neuronal Synaptogenesis and the mTOR Pathway In Vitro. Mol Neurobiol 55, 5962–5975 (2018). https://doi.org/10.1007/s12035-017-0818-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0818-6

Keywords

Navigation