Skip to main content
Log in

Vertebrate Presynaptic Active Zone Assembly: a Role Accomplished by Diverse Molecular and Cellular Mechanisms

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Among all the biological systems in vertebrates, the central nervous system (CNS) is the most complex, and its function depends on specialized contacts among neurons called synapses. The assembly and organization of synapses must be exquisitely regulated for a normal brain function and network activity. There has been a tremendous effort in recent decades to understand the molecular and cellular mechanisms participating in the formation of new synapses and their organization, maintenance, and regulation. At the vertebrate presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-BPs, CAST/ELKS, liprin-α, and Munc13 are constant residents and participate in multiple and dynamic interactions with other regulatory proteins, which define network activity and normal brain function. Here, we review the function of these active zone (AZ) proteins and diverse factors involved in AZ assembly and maintenance, with an emphasis on axonal trafficking of precursor vesicles, protein homo- and hetero-oligomeric interactions as a mechanism of AZ trapping and stabilization, and the role of F-actin in presynaptic assembly and its modulation by Wnt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alabi AA, Tsien RW (2012) Synaptic vesicle pools and dynamics. Cold Spring Harb Perspect Biol 4:a013680. doi:10.1101/cshperspect.a013680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Garner CC, Kindler S, Gundelfinger ED (2000) Molecular determinants of presynaptic active zones. Curr Opin Neurobiol 10:321–327

    Article  CAS  PubMed  Google Scholar 

  3. Schoch S, Gundelfinger ED (2006) Molecular organization of the presynaptic active zone. Cell Tissue Res 326:379–391. doi:10.1007/s00441-006-0244-y

    Article  CAS  PubMed  Google Scholar 

  4. Torres VI, Vallejo D, Inestrosa NC (2017) Emerging synaptic molecules as candidates in the etiology of neurological disorders. Neural Plast 2017:1–25. doi:10.1155/2017/8081758

    Article  CAS  Google Scholar 

  5. Ahmari SE, Buchanan J, Smith SJ (2000) Assembly of presynaptic active zones from cytoplasmic transport packets. Nat Neurosci 3:445–451. doi:10.1038/74814

    Article  CAS  PubMed  Google Scholar 

  6. Maas C, Torres VI, Altrock WD et al (2012) Formation of Golgi-derived active zone precursor vesicles. J Neurosci 32:11095–11108. doi:10.1523/JNEUROSCI.0195-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tao-Cheng J-H (2007) Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate. Neuroscience 150:575–584. doi:10.1016/j.neuroscience.2007.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhai RG, Vardinon-Friedman H, Cases-Langhoff C et al (2001) Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29:131–143

    Article  CAS  PubMed  Google Scholar 

  9. van den Berg R, Hoogenraad CC (2012) Molecular motors in cargo trafficking and synapse assembly. Advances in experimental medicine and biology, In, pp. 173–196

    Google Scholar 

  10. Fejtova A, Davydova D, Bischof F et al (2009) Dynein light chain regulates axonal trafficking and synaptic levels of bassoon. J Cell Biol 185:341–355. doi:10.1083/jcb.200807155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cases-Langhoff C, Voss B, Garner AM et al (1996) Piccolo, a novel 420 kDa protein associated with the presynaptic cytomatrix. Eur J Cell Biol 69:214–223

    CAS  PubMed  Google Scholar 

  12. Fenster SD, Chung WJ, Zhai R et al (2000) Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 25:203–214

    Article  CAS  PubMed  Google Scholar 

  13. Gundelfinger ED, Reissner C, Garner CC (2016) Role of bassoon and piccolo in assembly and molecular organization of the active zone. Front Synaptic Neurosci 7:19. doi:10.3389/fnsyn.2015.00019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kim S, Ko J, Shin H et al (2003) The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein piccolo. J Biol Chem 278:6291–6300. doi:10.1074/jbc.M212287200

    Article  CAS  PubMed  Google Scholar 

  15. Fenster SD, Kessels MM, Qualmann B et al (2003) Interactions between piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J Biol Chem 278:20268–20277. doi:10.1074/jbc.M210792200

    Article  CAS  PubMed  Google Scholar 

  16. Gerber SH, Garcia J, Rizo J, Südhof TC (2001) An unusual C(2)-domain in the active-zone protein piccolo: implications for Ca(2+) regulation of neurotransmitter release. EMBO J 20:1605–1619. doi:10.1093/emboj/20.7.1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Müller CS, Haupt A, Bildl W et al (2010) Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci U S A 107:14950–14957. doi:10.1073/pnas.1005940107

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wagh D, Terry-Lorenzo R, Waites CL et al (2015) Piccolo directs activity dependent F-actin assembly from presynaptic active zones via Daam1. PLoS One 10:e0120093. doi:10.1371/journal.pone.0120093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Terry-Lorenzo RT, Torres VI, Wagh D et al (2016) Trio, a rho family GEF, interacts with the presynaptic active zone proteins piccolo and bassoon. PLoS One 11:e0167535. doi:10.1371/journal.pone.0167535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Leal-Ortiz S, Waites CL, Terry-Lorenzo R et al (2008) Piccolo modulation of synapsin1a dynamics regulates synaptic vesicle exocytosis. J Cell Biol 181:831–846. doi:10.1083/jcb.200711167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waites CL, Leal-Ortiz SA, Andlauer TFM et al (2011) Piccolo regulates the dynamic assembly of presynaptic F-actin. J Neurosci Off J Soc Neurosci 31:14250–14263. doi:10.1523/JNEUROSCI.1835-11.2011

    Article  CAS  Google Scholar 

  22. Regus-Leidig H, Ott C, Löhner M et al (2013) Identification and immunocytochemical characterization of piccolino, a novel piccolo splice variant selectively expressed at sensory ribbon synapses of the eye and ear. PLoS One 8:e70373. doi:10.1371/journal.pone.0070373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Regus-Leidig H, Fuchs M, Löhner M et al (2014) In vivo knockdown of piccolino disrupts presynaptic ribbon morphology in mouse photoreceptor synapses. Front Cell Neurosci 8:259. doi:10.3389/fncel.2014.00259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cochilla AJ, Angleson JK, Betz WJ (1999) Monitoring secretory membrane with fm1-43 fluorescence. Annu Rev Neurosci 22:1–10. doi:10.1146/annurev.neuro.22.1.1

    Article  CAS  PubMed  Google Scholar 

  25. Mukherjee K, Yang X, Gerber SH et al (2010) Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. Proc Natl Acad Sci 107:6504–6509. doi:10.1073/pnas.1002307107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruckner JJ, Gratz SJ, Slind JK et al (2012) Fife, a Drosophila Piccolo-RIM homolog, promotes active zone organization and neurotransmitter release. J Neurosci 32:17048–17058. doi:10.1523/JNEUROSCI.3267-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruckner JJ, Zhan H, Gratz SJ et al (2017) Fife organizes synaptic vesicles and calcium channels for high-probability neurotransmitter release. J Cell Biol 216:231–246. doi:10.1083/jcb.201601098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dieck S, Sanmartí-Vila L, Langnaese K et al (1998) Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol 142:499–509

    Article  PubMed Central  Google Scholar 

  29. Wang X, Kibschull M, Laue MM et al (1999) Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with rim and bassoon and binds profilin. J Cell Biol 147:151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dieck S, Altrock WD, Kessels MM et al (2005) Molecular dissection of the photoreceptor ribbon synapse. J Cell Biol 168:825–836. doi:10.1083/jcb.200408157

    Article  CAS  Google Scholar 

  31. Khimich D, Nouvian R, Pujol R et al (2005) Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434:889–894. doi:10.1038/nature03418

    Article  CAS  PubMed  Google Scholar 

  32. Regus-Leidig H, Dieck S, Brandstätter JH (2010) Absence of functional active zone protein bassoon affects assembly and transport of ribbon precursors during early steps of photoreceptor synaptogenesis. Eur J Cell Biol 89:468–475. doi:10.1016/j.ejcb.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  33. Altrock WD, Dieck S, Sokolov M et al (2003) Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron 37:787–800

    Article  CAS  PubMed  Google Scholar 

  34. Hallermann S, Fejtova A, Schmidt H et al (2010) Bassoon speeds vesicle reloading at a central excitatory synapse. Neuron 68:710–723. doi:10.1016/j.neuron.2010.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davydova D, Marini C, King C et al (2014) Bassoon specifically controls presynaptic P/Q-type Ca2+ channels via RIM-binding protein. Neuron 82:181–194. doi:10.1016/j.neuron.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  36. Dick O, Dieck S, Altrock WD et al (2003) The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37:775–786

    Article  CAS  PubMed  Google Scholar 

  37. Frank T, Rutherford MA, Strenzke N et al (2010) Bassoon and the synaptic ribbon organize Ca2+ channels and vesicles to add release sites and promote refilling. Neuron 68:724–738. doi:10.1016/j.neuron.2010.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jing Z, Rutherford MA, Takago H et al (2013) Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse. J Neurosci Off J Soc Neurosci 33:4456–4467. doi:10.1523/JNEUROSCI.3491-12.2013

    Article  CAS  Google Scholar 

  39. Mendoza Schulz A, Jing Z, Sánchez Caro JM et al (2014) Bassoon-disruption slows vesicle replenishment and induces homeostatic plasticity at a CNS synapse. EMBO J 33:512–527. doi:10.1002/embj.201385887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ahmed S, Wittenmayer N, Kremer T et al (2013) Mover is a homomeric phospho-protein present on synaptic vesicles. PLoS One 8:e63474. doi:10.1371/journal.pone.0063474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Körber C, Horstmann H, Venkataramani V et al (2015) Modulation of presynaptic release probability by the vertebrate-specific protein mover. Neuron 87:521–533. doi:10.1016/j.neuron.2015.07.001

    Article  PubMed  CAS  Google Scholar 

  42. Waites CL, Leal-Ortiz SA, Okerlund N et al (2013) Bassoon and piccolo maintain synapse integrity by regulating protein ubiquitination and degradation. EMBO J 32:954–969. doi:10.1038/emboj.2013.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ivanova D, Dirks A, Montenegro-Venegas C et al (2015) Synaptic activity controls localization and function of CtBP1 via binding to bassoon and piccolo. The EMBO journal 34:1056–1077. doi:10.15252/embj.201488796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Okerlund ND, Schneider K, Leal-Ortiz S et al (2017) Bassoon controls presynaptic autophagy through Atg5. Neuron 93:897–913.e7. doi:10.1016/j.neuron.2017.01.026

    Article  CAS  PubMed  Google Scholar 

  45. Chinnadurai G (2009) The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 69:731–734. doi:10.1158/0008-5472.CAN-08-3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deguchi-Tawarada M, Inoue E, Takao-Rikitsu E et al (2004) CAST2: identification and characterization of a protein structurally related to the presynaptic cytomatrix protein CAST. Genes Cells Devoted Mol Cell Mech 9:15–23

    Article  CAS  Google Scholar 

  47. Wang Y, Liu X, Biederer T, Südhof TC (2002) A family of RIM-binding proteins regulated by alternative splicing: implications for the genesis of synaptic active zones. Proc Natl Acad Sci U S A 99:14464–14469. doi:10.1073/pnas.182532999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohtsuka T, Takao-Rikitsu E, Inoue E et al (2002) Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. J Cell Biol 158:577–590. doi:10.1083/jcb.200202083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takao-Rikitsu E, Mochida S, Inoue E et al (2004) Physical and functional interaction of the active zone proteins, CAST, RIM1, and bassoon, in neurotransmitter release. J Cell Biol 164:301–311. doi:10.1083/jcb.200307101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ko J, Na M, Kim S et al (2003) Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins. J Biol Chem 278:42377–42385. doi:10.1074/jbc.M307561200

    Article  CAS  PubMed  Google Scholar 

  51. Monier S, Jollivet F, Janoueix-Lerosey I, et al. (2002) Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic (Copenhagen, Denmark) 3:289–297.

  52. Ko J, Yoon C, Piccoli G et al (2006) Organization of the presynaptic active zone by ERC2/CAST1-dependent clustering of the tandem PDZ protein syntenin-1. J Neurosci Off J Soc Neurosci 26:963–970. doi:10.1523/JNEUROSCI.4475-05.2006

    Article  CAS  Google Scholar 

  53. Kaeser PS, Deng L, Chávez AE et al (2009) ELKS2alpha/CAST deletion selectively increases neurotransmitter release at inhibitory synapses. Neuron 64:227–239. doi:10.1016/j.neuron.2009.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dieck S, Specht D, Strenzke N et al (2012) Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing. J Neurosci 32:12192–12203. doi:10.1523/JNEUROSCI.0752-12.2012

    Article  CAS  Google Scholar 

  55. Liu C, Bickford LS, Held RG et al (2014) The active zone protein family ELKS supports Ca2+ influx at nerve terminals of inhibitory hippocampal neurons. J Neurosci Off J Soc Neurosci 34:12289–12303. doi:10.1523/JNEUROSCI.0999-14.2014

    Article  CAS  Google Scholar 

  56. Kiyonaka S, Nakajima H, Takada Y et al (2012) Physical and functional interaction of the active zone protein CAST/ERC2 and the -subunit of the voltage-dependent Ca2+ channel. J Biochem 152:149–159. doi:10.1093/jb/mvs054

    Article  CAS  PubMed  Google Scholar 

  57. Held RG, Liu C, Kaeser PS (2016) ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains. elife. doi:10.7554/eLife.14862

  58. Wagh DA, Rasse TM, Asan E et al (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844. doi:10.1016/j.neuron.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  59. Kittel RJ, Wichmann C, Rasse TM et al (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312:1051–1054. doi:10.1126/science.1126308

    Article  CAS  PubMed  Google Scholar 

  60. Deken SL, Vincent R, Hadwiger G et al (2005) Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans. J Neurosci 25:5975–5983. doi:10.1523/JNEUROSCI.0804-05.2005

    Article  CAS  PubMed  Google Scholar 

  61. Dai Y, Taru H, Deken SL et al (2006) SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS. Nat Neurosci 9:1479–1487. doi:10.1038/nn1808

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Okamoto M, Schmitz F et al (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598. doi:10.1038/41580

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, Südhof TC (2003) Genomic definition of RIM proteins: evolutionary amplification of a family of synaptic regulatory proteins. Genomics 81:126–137

    Article  CAS  PubMed  Google Scholar 

  64. Mittelstaedt T, Schoch S (2007) Structure and evolution of RIM-BP genes: identification of a novel family member. Gene 403:70–79. doi:10.1016/j.gene.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  65. Coppola T, Magnin-Luthi S, Perret-Menoud V et al (2001) Direct interaction of the Rab3 effector RIM with Ca2+channels, SNAP-25, and synaptotagmin. J Biol Chem 276:32756–32762. doi:10.1074/jbc.M100929200

    Article  CAS  PubMed  Google Scholar 

  66. Gandini MA, Felix R (2012) Functional interactions between voltage-gated Ca2+ channels and Rab3-interacting molecules (RIMs): new insights into stimulus–secretion coupling. Biochim Biophys Acta Biomembr 1818:551–558. doi:10.1016/j.bbamem.2011.12.011

    Article  CAS  Google Scholar 

  67. Schoch S, Castillo PE, Jo T et al (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415:321–326. doi:10.1038/415321a

    Article  CAS  PubMed  Google Scholar 

  68. Castillo PE, Schoch S, Schmitz F et al (2002) RIM1α is required for presynaptic long-term potentiation. Nature 415:327–330. doi:10.1038/415327a

    Article  CAS  PubMed  Google Scholar 

  69. Powell CM, Schoch S, Monteggia L et al (2004) The presynaptic active zone protein RIM1alpha is critical for normal learning and memory. Neuron 42:143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Deng L, Kaeser PS, Xu W, Südhof TC (2011) RIM proteins activate vesicle priming by reversing autoinhibitory homodimerization of Munc13. Neuron 69:317–331. doi:10.1016/j.neuron.2011.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gracheva EO, Hadwiger G, Nonet ML, Richmond JE (2008) Direct interactions between C. elegans RAB-3 and rim provide a mechanism to target vesicles to the presynaptic density. Neurosci Lett 444:137–142. doi:10.1016/j.neulet.2008.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koushika SP, Richmond JE, Hadwiger G et al (2001) A post-docking role for active zone protein rim. Nat Neurosci 4:997–1005. doi:10.1038/nn732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Han Y, Babai N, Kaeser P et al (2015) RIM1 and RIM2 redundantly determine Ca2+ channel density and readily releasable pool size at a large hindbrain synapse. J Neurophysiol 113:255–263. doi:10.1152/jn.00488.2014

    Article  CAS  PubMed  Google Scholar 

  74. Kaeser PS, Deng L, Wang Y et al (2011) RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144:282–295. doi:10.1016/j.cell.2010.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Graf ER, Valakh V, Wright CM et al (2012) RIM promotes calcium channel accumulation at active zones of the Drosophila neuromuscular junction. J Neurosci Off J Soc Neurosci 32:16586–16596. doi:10.1523/JNEUROSCI.0965-12.2012

    Article  CAS  Google Scholar 

  76. Lu J, Machius M, Dulubova I et al (2006) Structural basis for a Munc13–1 homodimer to Munc13–1/RIM heterodimer switch. PLoS Biol 4:e192. doi:10.1371/journal.pbio.0040192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hibino H, Pironkova R, Onwumere O et al (2002) RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca(2+) channels. Neuron 34:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Acuna C, Liu X, Gonzalez A, Südhof TC (2015) RIM-BPs mediate tight coupling of action potentials to Ca2+−triggered neurotransmitter release. Neuron 87:1234–1247. doi:10.1016/j.neuron.2015.08.027

    Article  CAS  PubMed  Google Scholar 

  79. Acuna C, Liu X, Südhof TC (2016) How to make an active zone: unexpected universal functional redundancy between RIMs and RIM-BPs. Neuron 91:792–807. doi:10.1016/j.neuron.2016.07.042

    Article  CAS  PubMed  Google Scholar 

  80. Muller M, Liu KSY, Sigrist SJ, Davis GW (2012) RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool. J Neurosci 32:16574–16585. doi:10.1523/JNEUROSCI.0981-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Müller M, Genç Ö, Davis GW (2015) RIM-binding protein links synaptic homeostasis to the stabilization and replenishment of high release probability vesicles. Neuron 85:1056–1069. doi:10.1016/j.neuron.2015.01.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wang Y, Sugita S, Sudhof TC (2000) The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. J Biol Chem 275:20033–20044. doi:10.1074/jbc.M909008199

    Article  CAS  PubMed  Google Scholar 

  83. Grauel MK, Maglione M, Reddy-Alla S et al (2016) RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses. Proc Natl Acad Sci U S A 113:11615–11620. doi:10.1073/pnas.1605256113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Serra-Pagès C, Kedersha NL, Fazikas L et al (1995) The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J 14:2827–2838

    Article  PubMed  PubMed Central  Google Scholar 

  85. Serra-Pagès C, Medley QG, Tang M et al (1998) Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem 273:15611–15620

    Article  PubMed  Google Scholar 

  86. Taru H, Jin Y (2011) The liprin homology domain is essential for the homomeric interaction of SYD-2/liprin- protein in presynaptic assembly. J Neurosci 31:16261–16268. doi:10.1523/JNEUROSCI.0002-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ko J, Na M, Kim S et al (2003) Interaction of the ERC family of RIM-binding proteins with the liprin—family of multidomain proteins. J Biol Chem 278:42377–42385. doi:10.1074/jbc.M307561200

    Article  CAS  PubMed  Google Scholar 

  88. Dai Y, Taru H, Deken SL et al (2006) SYD-2 liprin-alpha organizes presynaptic active zone formation through ELKS. Nat Neurosci 9:1479–1487. doi:10.1038/nn1808

    Article  CAS  PubMed  Google Scholar 

  89. Astigarraga S, Hofmeyer K, Farajian R, Treisman JE (2010) Three Drosophila liprins interact to control synapse formation. J Neurosci Off J Soc Neurosci 30:15358–15368. doi:10.1523/JNEUROSCI.1862-10.2010

    Article  CAS  Google Scholar 

  90. Olsen O, Moore KA, Fukata M et al (2005) Neurotransmitter release regulated by a MALS–liprin-α presynaptic complex. J Cell Biol 170:1127–1134. doi:10.1083/jcb.200503011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kalla S, Stern M, Basu J et al (2006) Molecular dynamics of a presynaptic active zone protein studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice. J Neurosci 26:13054–13066. doi:10.1523/JNEUROSCI.4330-06.2006

    Article  CAS  PubMed  Google Scholar 

  92. Tsuriel S, Fisher A, Wittenmayer N et al (2009) Exchange and redistribution dynamics of the cytoskeleton of the active zone molecule bassoon. J Neurosci 29:351–358. doi:10.1523/JNEUROSCI.4777-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Spangler SA, Jaarsma D, De Graaff E et al (2011) Differential expression of liprin-α family proteins in the brain suggests functional diversification. J Comp Neurol 519:3040–3060. doi:10.1002/cne.22665

    Article  CAS  PubMed  Google Scholar 

  94. Wei Z, Zheng S, Spangler SA et al (2011) Liprin-mediated large signaling complex organization revealed by the liprin-α/CASK and liprin-α/liprin-β complex structures. Mol Cell 43:586–598. doi:10.1016/j.molcel.2011.07.021

    Article  CAS  PubMed  Google Scholar 

  95. Spangler SA, Schmitz SK, Kevenaar JT et al (2013) Liprin-α2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission. J Cell Biol 201:915–928. doi:10.1083/jcb.201301011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhen M, Jin Y (1999) The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401:371–375. doi:10.1038/43886

    Article  CAS  PubMed  Google Scholar 

  97. Augustin I, Rosenmund C, Südhof TC, Brose N (1999) Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400:457–461. doi:10.1038/22768

    Article  CAS  PubMed  Google Scholar 

  98. Junge HJ, Rhee J-S, Jahn O et al (2004) Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 118:389–401. doi:10.1016/j.cell.2004.06.029

    Article  CAS  PubMed  Google Scholar 

  99. Kawabe H, Mitkovski M, Kaeser PS et al (2017) ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones. J Cell Biol 216:1143–1161. doi:10.1083/jcb.201606086

    Article  PubMed  PubMed Central  Google Scholar 

  100. Brose N, Hofmann K, Hata Y, Südhof TC (1995) Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem 270:25273–25280

    Article  CAS  PubMed  Google Scholar 

  101. Koch H, Hofmann K, Brose N (2000) Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochem J 349:247–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Basu J, Shen N, Dulubova I et al (2005) A minimal domain responsible for Munc13 activity. Nat Struct Mol Biol 12:1017–1018. doi:10.1038/nsmb1001

    Article  CAS  PubMed  Google Scholar 

  103. Ma C, Li W, Xu Y, Rizo J (2011) Munc13 mediates the transition from the closed syntaxin–Munc18 complex to the SNARE complex. Nat Struct Mol Biol 18:542–549. doi:10.1038/nsmb.2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Betz A, Thakur P, Junge HJ et al (2001) Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30:183–196

    Article  CAS  PubMed  Google Scholar 

  105. Dulubova I, Lou X, Lu J et al (2005) A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO J 24:2839–2850. doi:10.1038/sj.emboj.7600753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang X, Hu B, Zieba A et al (2009) A protein interaction node at the neurotransmitter release site: domains of aczonin/piccolo, bassoon, CAST, and rim converge on the N-terminal domain of Munc13-1. J Neurosci Off J Soc Neurosci 29:12584–12596. doi:10.1523/JNEUROSCI.1255-09.2009

    Article  CAS  Google Scholar 

  107. Nakata T, Terada S, Hirokawa N (1998) Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J Cell Biol 140:659–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Friedman HV, Bresler T, Garner CC, Ziv NE (2000) Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27:57–69

    Article  CAS  PubMed  Google Scholar 

  109. Shapira M, Zhai RG, Dresbach T et al (2003) Unitary assembly of presynaptic active zones from piccolo-bassoon transport vesicles. Neuron 38:237–252

    Article  CAS  PubMed  Google Scholar 

  110. Dresbach T, Torres V, Wittenmayer N et al (2006) Assembly of active zone precursor vesicles: obligatory trafficking of presynaptic cytomatrix proteins bassoon and piccolo via a trans-Golgi compartment. J Biol Chem 281:6038–6047

    Article  CAS  PubMed  Google Scholar 

  111. Fairless R, Masius H, Rohlmann A et al (2008) Polarized targeting of neurexins to synapses is regulated by their C-terminal sequences. J Neurosci 28:12969–12981. doi:10.1523/JNEUROSCI.5294-07.2008

    Article  CAS  PubMed  Google Scholar 

  112. Su Q, Cai Q, Gerwin C et al (2004) Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat Cell Biol 6:941–953. doi:10.1038/ncb1169

    Article  CAS  PubMed  Google Scholar 

  113. Cai Q, Pan P-Y, Sheng Z-H (2007) Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J Neurosci 27:7284–7296. doi:10.1523/JNEUROSCI.0731-07.2007

    Article  CAS  PubMed  Google Scholar 

  114. Sabo SL, Gomes RA, McAllister AK (2006) Formation of presynaptic terminals at predefined sites along axons. J Neurosci 26:10813–10825. doi:10.1523/JNEUROSCI.2052-06.2006

    Article  CAS  PubMed  Google Scholar 

  115. Bury LA, Sabo SL (2011) Coordinated trafficking of synaptic vesicle and active zone proteins prior to synapse formation. Neural Dev 6:24. doi:10.1186/1749-8104-6-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fernandez F, Torres V, Zamorano P (2010) An evolutionarily conserved mechanism for presynaptic trapping. Cell Mol Life Sci 67:1751–1754

    Article  CAS  PubMed  Google Scholar 

  117. Dresbach T, Hempelmann A, Spilker C et al (2003) Functional regions of the presynaptic cytomatrix protein bassoon: significance for synaptic targeting and cytomatrix anchoring. Mol Cell Neurosci 23:279–291

    Article  CAS  PubMed  Google Scholar 

  118. Jose M, Nair DK, Altrock WD et al (2008) Investigating interactions mediated by the presynaptic protein bassoon in living cells by Foerster’s resonance energy transfer and fluorescence lifetime imaging microscopy. Biophys J 94:1483–1496. doi:10.1529/biophysj.107.111674

    Article  CAS  PubMed  Google Scholar 

  119. Siebert M, Böhme MA, Driller JH et al (2015) A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones. elife. doi:10.7554/eLife.06935

  120. Nieratschker V, Schubert A, Jauch M et al (2009) Bruchpilot in ribbon-like axonal agglomerates, behavioral defects, and early death in SRPK79D kinase mutants of Drosophila. PLoS Genet 5:e1000700. doi:10.1371/journal.pgen.1000700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Johnson EL, Fetter RD, Davis GW (2009) Negative regulation of active zone assembly by a newly identified SR protein kinase. PLoS Biol 7:e1000193. doi:10.1371/journal.pbio.1000193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Klassen MP, Wu YE, Maeder CI et al (2010) An Arf-like small G protein, ARL-8, promotes the axonal transport of presynaptic cargoes by suppressing vesicle aggregation. Neuron 66:710–723. doi:10.1016/j.neuron.2010.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dai Z, Peng HB (1996) Dynamics of synaptic vesicles in cultured spinal cord neurons in relationship to synaptogenesis. Mol Cell Neurosci 7:443–452. doi:10.1006/mcne.1996.0032

    Article  CAS  PubMed  Google Scholar 

  124. Bernstein BW, DeWit M, Bamburg JR (1998) Actin disassembles reversibly during electrically induced recycling of synaptic vesicles in cultured neurons. Brain Res Mol Brain Res 53:236–251

    Article  CAS  PubMed  Google Scholar 

  125. Zhang W, Benson DL (2001) Stages of synapse development defined by dependence on F-actin. J Neurosci Off J Soc Neurosci 21:5169–5181

    Article  CAS  Google Scholar 

  126. Nelson JC, Stavoe AKH, Colón-Ramos DA (2013) The actin cytoskeleton in presynaptic assembly. Cell Adhes Migr 7:379–387. doi:10.4161/cam.24803

    Article  Google Scholar 

  127. Wang XH, Zheng JQ, Poo MM (1996) Effects of cytochalasin treatment on short-term synaptic plasticity at developing neuromuscular junctions in frogs. J Physiol:187–195

  128. Kim CH, Lisman JE (1999) A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci Off J Soc Neurosci 19:4314–4324

    Article  CAS  Google Scholar 

  129. Bleckert A, Photowala H, Alford S (2012) Dual pools of actin at presynaptic terminals. J Neurophysiol 107:3479–3492. doi:10.1152/jn.00789.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chia PH, Patel MR, Shen K (2012) NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins. Nat Neurosci 15:234–242. doi:10.1038/nn.2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fujimoto K, Shibasaki T, Yokoi N et al (2002) Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2. Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 277:50497–50502. doi:10.1074/jbc.M210146200

    Article  CAS  PubMed  Google Scholar 

  132. Waites CL, Garner CC (2011) Presynaptic function in health and disease. Trends Neurosci 34:326–337. doi:10.1016/j.tins.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  133. Dickins EM, Salinas PC (2013) Wnts in action: from synapse formation to synaptic maintenance. Front Cell Neurosci 7:162. doi:10.3389/fncel.2013.00162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol 6:64–74. doi:10.1093/jmcb/mjt051

    Article  PubMed  Google Scholar 

  135. Varela-Nallar L, Alfaro IE, Serrano FG et al (2010) Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci 107:21164–21169. doi:10.1073/pnas.1010011107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11:77–86. doi:10.1038/nrn2755

    Article  CAS  PubMed  Google Scholar 

  137. Budnik V, Salinas PC (2011) Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol 21:151–159. doi:10.1016/j.conb.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cerpa W, Gambrill A, Inestrosa NC, Barria A (2011) Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci Off J Soc Neurosci 31:9466–9471. doi:10.1523/JNEUROSCI.6311-10.2011

    Article  CAS  Google Scholar 

  139. Oliva CA, Vargas JY, Inestrosa NC (2013) Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 7:224. doi:10.3389/fncel.2013.00224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Toledo EM, Colombres M, Inestrosa NC (2008) Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol 86:281–296. doi:10.1016/j.pneurobio.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  141. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. doi:10.1146/annurev.cellbio.20.010403.113126

    Article  CAS  PubMed  Google Scholar 

  142. Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433. doi:10.1074/jbc.R600015200

    Article  CAS  PubMed  Google Scholar 

  143. Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of rho regulates vertebrate gastrulation and requires a novel formin homology protein Daam1. Cell 107:843–854

    Article  CAS  PubMed  Google Scholar 

  144. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34–42. doi:10.1038/nn1374

    Article  CAS  PubMed  Google Scholar 

  145. Rosso SB, Inestrosa NC (2013) WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 7:103. doi:10.3389/fncel.2013.00103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Inestrosa NC, Montecinos-Oliva C, Fuenzalida M (2012) Wnt signaling: role in Alzheimer disease and schizophrenia. J NeuroImmune Pharmacol 7:788–807. doi:10.1007/s11481-012-9417-5

    Article  PubMed  Google Scholar 

  147. Lucas FR, Salinas PC (1997) WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons. Dev Biol 192:31–44. doi:10.1006/dbio.1997.8734

    Article  CAS  PubMed  Google Scholar 

  148. Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–535

    Article  CAS  PubMed  Google Scholar 

  149. Cerpa W, Godoy JA, Alfaro I et al (2007) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283:5918–5927. doi:10.1074/jbc.M705943200

    Article  PubMed  CAS  Google Scholar 

  150. Ahmad-Annuar A, Ciani L, Simeonidis I et al (2006) Signaling across the synapse: a role for Wnt and dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 174:127–139. doi:10.1083/jcb.200511054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Varela-Nallar L, Grabowski CP, Alfaro IE et al (2009) Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Dev 4:41. doi:10.1186/1749-8104-4-41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Liu W, Sato A, Khadka D et al (2008) Mechanism of activation of the formin protein Daam1. Proc Natl Acad Sci U S A 105:210–215. doi:10.1073/pnas.0707277105

    Article  CAS  PubMed  Google Scholar 

  153. Young KG, Copeland JW (2010) Formins in cell signaling. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1803:183–190. doi:10.1016/j.bbamcr.2008.09.017

    Article  CAS  Google Scholar 

  154. Bateman J, Van Vactor D (2001) The trio family of guanine-nucleotide-exchange factors: regulators of axon guidance. J Cell Sci 114:1973–1980

    CAS  PubMed  Google Scholar 

  155. Mabb AM, Ehlers MD (2010) Ubiquitination in postsynaptic function and plasticity. Annu Rev Cell Dev Biol 26:179–210. doi:10.1146/annurev-cellbio-100109-104129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fernández-Chacón R, Wölfel M, Nishimune H et al (2004) The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 42:237–251

    Article  PubMed  Google Scholar 

  157. Wheeler TC, Chin L-S, Li Y et al (2002) Regulation of synaptophysin degradation by mammalian homologues of seven in absentia. J Biol Chem 277:10273–10282. doi:10.1074/jbc.M107857200

    Article  CAS  PubMed  Google Scholar 

  158. Iwata A, Christianson JC, Bucci M et al (2005) Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci U S A 102:13135–13140. doi:10.1073/pnas.0505801102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pandey UB, Nie Z, Batlevi Y et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863. doi:10.1038/nature05853

    Article  CAS  PubMed  Google Scholar 

  160. Kumar A, Bodhinathan K, Foster TC (2009) Susceptibility to calcium dysregulation during brain aging. Front Aging Neurosci 1:2. doi:10.3389/neuro.24.002.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15:89–100. doi:10.1016/j.molmed.2009.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yu X, Malenka RC (2003) β-catenin is critical for dendritic morphogenesis. Nat Neurosci 6:1169–1177. doi:10.1038/nn1132

    Article  CAS  PubMed  Google Scholar 

  163. Chen J, Park CS, Tang S-J (2006) Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem 281:11910–11916. doi:10.1074/jbc.M511920200

    Article  CAS  PubMed  Google Scholar 

  164. Wayman GA, Impey S, Marks D et al (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50:897–909. doi:10.1016/j.neuron.2006.05.008

    Article  CAS  PubMed  Google Scholar 

  165. Gogolla N, Galimberti I, Deguchi Y, Caroni P (2009) Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 62:510–525. doi:10.1016/j.neuron.2009.04.022

    Article  CAS  PubMed  Google Scholar 

  166. Purro SA, Dickins EM, Salinas PC (2012) The secreted Wnt antagonist Dickkopf-1 is required for amyloid β-mediated synaptic loss. J Neurosc Off J Soc Neurosci 32:3492–3498. doi:10.1523/JNEUROSCI.4562-11.2012

    Article  CAS  Google Scholar 

  167. Chen C-M, Orefice LL, Chiu S-L et al (2017) Wnt5a is essential for hippocampal dendritic maintenance and spatial learning and memory in adult mice. Proc Natl Acad Sci U S A 114:E619–E628. doi:10.1073/pnas.1615792114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Basal Center of Excellence in Aging and Regeneration (CONICYT-PFB 12/2007) and FONDECYT (No. 1160724) to N. C. Inestrosa. V. Torres, a Research Associate of CARE. We also thank the Sociedad Química y Minera de Chile (SQM) for a special grant on “The Effects of Lithium on Health and Disease.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibaldo C. Inestrosa.

Ethics declarations

Competing Interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, V.I., Inestrosa, N.C. Vertebrate Presynaptic Active Zone Assembly: a Role Accomplished by Diverse Molecular and Cellular Mechanisms. Mol Neurobiol 55, 4513–4528 (2018). https://doi.org/10.1007/s12035-017-0661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0661-9

Keywords

Navigation