Skip to main content

Advertisement

Log in

Radiobiological Characterization of Tuberous Sclerosis: a Delay in the Nucleo-Shuttling of ATM May Be Responsible for Radiosensitivity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The tuberous sclerosis complex (TSC) syndrome is associated with numerous cutaneous pathologies (notably on the face), epilepsy, intellectual disability and developmental retardation and, overall, high occurrence of benign tumors in several organs, like angiofibromas, giant cell astrocytomas, renal angiomyolipomas, and pulmonary lymphangioleiomyomatosis. TSC is caused by mutations of either of the hamartin or tuberin proteins that are mainly cytoplasmic. Some studies published in the 1980s reported that TSC is associated with radiosensitivity. However, its molecular basis in TSC cells is not documented enough. Here, we examined the functionality of the repair and signaling of radiation-induced DNA double-strand breaks (DSB) in fibroblasts derived from TSC patients. Quiescent TSC fibroblast cells elicited abnormally low rate of recognized DSB reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones. Irradiated TSC cells also presented a delay in the nucleo-shuttling of the ATM kinase, potentially due to a specific binding of ATM to mutated TSC protein in cytoplasm. Lastly, TSC fibroblasts showed abnormally high MRE11 nuclease activity suggesting genomic instability. A combination of biphosphonates and statins complemented these impairments by facilitating the nucleoshuttling of ATM and increasing the yield of recognized DSB. Our results showed that TSC belongs to the group of syndromes associated with low but significant defect of DSB signaling and delay in the ATM nucleo-shuttling associated with radiosensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bourneville D-M (1880) Sclérose tubéreuse des circonvolution cérébrales: Idiotie et épilepsie hemiplégique. Arch Neurol 1:81–91

    Google Scholar 

  2. Baskin HJ Jr (2008) The pathogenesis and imaging of the tuberous sclerosis complex. Pediatr Radiol 38(9):936–952. doi:10.1007/s00247-008-0832-y

    Article  PubMed  Google Scholar 

  3. Sahin M, Henske EP, Manning BD, Ess KC, Bissler JJ, Klann E, Kwiatkowski DJ, Roberds SL et al, Tuberous Sclerosis Complex Working Group to Update the Research P (2016) Advances and future directions for tuberous sclerosis complex research: recommendations from the 2015 strategic planning conference. Pediatr Neurol 60:1–12. doi:10.1016/j.pediatrneurol.2016.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  4. Henske EP, Jozwiak S, Kingswood JC, Sampson JR, Thiele EA (2016) Tuberous sclerosis complex. Nat Rev Dis Primers 2:16035. doi:10.1038/nrdp.2016.35

    Article  PubMed  Google Scholar 

  5. Napolioni V, Curatolo P (2008) Genetics and molecular biology of tuberous sclerosis complex. Curr Genomics 9(7):475–487. doi:10.2174/138920208786241243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277(5327):805–808

    Article  PubMed  Google Scholar 

  7. European Chromosome 16 Tuberous Sclerosis C (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75(7):1305–1315

    Article  Google Scholar 

  8. Hoogeveen-Westerveld M, Ekong R, Povey S, Karbassi I, Batish SD, den Dunnen JT, van Eeghen A, Thiele E et al (2012) Functional assessment of TSC1 missense variants identified in individuals with tuberous sclerosis complex. Hum Mutat 33(3):476–479. doi:10.1002/humu.22007

    Article  CAS  PubMed  Google Scholar 

  9. Hoogeveen-Westerveld M, Ekong R, Povey S, Mayer K, Lannoy N, Elmslie F, Bebin M, Dies K et al (2013) Functional assessment of TSC2 variants identified in individuals with tuberous sclerosis complex. Hum Mutat 34(1):167–175. doi:10.1002/humu.22202

    Article  CAS  PubMed  Google Scholar 

  10. Hoogeveen-Westerveld M, Wentink M, van den Heuvel D, Mozaffari M, Ekong R, Povey S, den Dunnen JT, Metcalfe K et al (2011) Functional assessment of variants in the TSC1 and TSC2 genes identified in individuals with tuberous sclerosis complex. Hum Mutat 32(4):424–435. doi:10.1002/humu.21451

    Article  CAS  PubMed  Google Scholar 

  11. Qin J, Wang Z, Hoogeveen-Westerveld M, Shen G, Gong W, Nellist M, Xu W (2016) Structural basis of the interaction between tuberous sclerosis complex 1 (TSC1) and Tre2-Bub2-Cdc16 domain family member 7 (TBC1D7). J Biol Chem 291(16):8591–8601. doi:10.1074/jbc.M115.701870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Overwater IE, Swenker R, van der Ende EL, Hanemaayer KB, Hoogeveen-Westerveld M, van Eeghen AM, Lequin MH, van den Ouweland AM et al (2016) Genotype and brain pathology phenotype in children with tuberous sclerosis complex. Eur J Hum Genet. doi:10.1038/ejhg.2016.85

  13. Jentarra GM, Rice SG, Olfers S, Saffen D, Narayanan V (2011) Evidence for population variation in TSC1 and TSC2 gene expression. BMC Med Genet 12:29. doi:10.1186/1471-2350-12-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan KL et al (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A 107(9):4153–4158. doi:10.1073/pnas.0913860107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bodgi L, Foray N (2016) The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: resolution of the linear-quadratic model. Int J Radiat Biol 92:117–131

    Article  CAS  PubMed  Google Scholar 

  16. Granzotto A, Benadjaoud MA, Vogin G, Devic C, Ferlazzo ML, Bodgi L, Pereira S, Sonzogni L et al (2016) Influence of nucleoshuttling of the ATM protein in the healthy tissues response to radiation therapy: toward a molecular classification of human radiosensitivity. Int J Radiat Oncol Biol Phys 94(3):450–460. doi:10.1016/j.ijrobp.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  17. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A 100(9):5057–5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bodgi L, Granzotto A, Devic C, Vogin G, Lesne A, Bottollier-Depois JF, Victor JM, Maalouf M et al (2013) A single formula to describe radiation-induced protein relocalization: towards a mathematical definition of individual radiosensitivity. J Theor Biol 333:135–145

    Article  CAS  PubMed  Google Scholar 

  19. Joubert A, Zimmerman KM, Bencokova Z, Gastaldo J, Rénier W, Chavaudra N, Favaudon V, Arlett C et al (2008) DNA double-strand break repair defects in syndromes associated with acute radiation response: at least two different assays to predict intrinsic radiosensitivity? Int J Radiat Biol 84(2):1–19

    Article  Google Scholar 

  20. Ferlazzo ML, Foray N (2016) Huntington disease: a disease of DNA methylation or DNA breaks? Am J Pathol 186(7):1750–1753. doi:10.1016/j.ajpath.2016.05.001

    Article  PubMed  Google Scholar 

  21. Ferlazzo ML, Sonzogni L, Granzotto A, Bodgi L, Lartin O, Devic C, Vogin G, Pereira S et al (2014) Mutations of the Huntington's disease protein impact on the ATM-dependent signaling and repair pathways of the radiation-induced DNA double-strand breaks: corrective effect of statins and bisphosphonates. Mol Neurobiol 49:1200–1211. doi:10.1007/s12035-013-8591-7

    Article  CAS  PubMed  Google Scholar 

  22. Bencokova Z, Devic C, Ferlazzo ML, Granzotto A, Sonzogni L, Burlet SF, Viau M, Bodgi L, Bachelet JT, Combemale P, Balosso J, Foray N (in press) Radiobiological characterization of neurofibromatosis type I : The neurofibromin protein impacts on the ATM-dependent DNA damage repair and signaling pathway. Molecular neurobiology

  23. Deschavanne PJ, Fertil B (1996) A review of human cell radiosensitivity in vitro. Int J Radiat Oncol Biol Phys 34(1):251–266

    Article  CAS  PubMed  Google Scholar 

  24. Paterson MC, Sell BM, Smith BP, Bech-Hansen NT (1982) Impaired colony-forming ability following gamma irradiation of skin fibroblasts from tuberous sclerosis patients. Radiat Res 90(2):260–270

    Article  CAS  PubMed  Google Scholar 

  25. Hayashi A, Yoshida Y, Tanaka H, Arima M, Ohno K (1985) Variable radiosensitivity in fibroblasts from patients with tuberous sclerosis. J Invest Dermatol 84(1):77–78

    Article  CAS  PubMed  Google Scholar 

  26. Scudiero DA, Moshell AN, Scarpinato RG, Meyer SA, Clatterbuck BE, Tarone RE, Robbins JH (1982) Lymphoblastoid lines and skin fibroblasts from patients with tuberous sclerosis are abnormally sensitive to ionizing radiation and to a radiomimetic chemical. J Invest Dermatol 78(3):234–238

    Article  CAS  PubMed  Google Scholar 

  27. Duchemann B, Wong S, Baruch-Hennequin V, Rivera S, Quero L, Hennequin C (2013) Hypersensitivity to radiation therapy in a patient with tuberous sclerosis: biological considerations about a clinical case. Cancer radiotherapie: journal de la Societe francaise de radiotherapie oncologique 17(1):50–53. doi:10.1016/j.canrad.2012.11.001

    Article  CAS  Google Scholar 

  28. Au KS, Williams AT, Roach ES, Batchelor L, Sparagana SP, Delgado MR, Wheless JW, Baumgartner JE et al (2007) Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med Off J Am Coll Med Genet 9(2):88–100. doi:10.1097/GIM.0b013e31803068c7

    CAS  Google Scholar 

  29. Foray N, Priestley A, Alsbeih G, Badie C, Capulas EP, Arlett CF, Malaise EP (1997) Hypersensitivity of ataxia telangiectasia fibroblasts to ionizing radiation is associated with a repair deficiency of DNA double-strand breaks. Int J Radiat Biol 72(3):271–283

    Article  CAS  PubMed  Google Scholar 

  30. Foray N, Fertil B, Alsbeih MG, Badie C, Chavaudra N, Iliakis G, Malaise EP (1996) Dose-rate effect on radiation-induced DNA double-strand breaks in the human fibroblast HF19 cell line. Int J Radiat Biol 69(2):241–249

    Article  CAS  PubMed  Google Scholar 

  31. Varela I, Pereira S, Ugalde AP, Navarro CL, Suarez MF, Cau P, Cadinanos J, Osorio FG et al (2008) Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 14(7):767–772

    Article  CAS  PubMed  Google Scholar 

  32. Badie C, Iliakis G, Foray N, Alsbeih G, Cedervall B, Chavaudra N, Pantelias G, Arlett C et al (1995) Induction and rejoining of DNA double-strand breaks and interphase chromosome breaks after exposure to X rays in one normal and two hypersensitive human fibroblast cell lines. Radiat Res 144(1):26–35

    Article  CAS  PubMed  Google Scholar 

  33. Foray N, Marot D, Gabriel A, Randrianarison V, Carr AM, Perricaudet M, Ashworth A, Jeggo P (2003) A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J 22(11):2860–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Foray N, Bourguignon M, Hamada N (2016) Individual response to ionizing radiation. Mutat Res Rev 770:369–386

    Article  CAS  Google Scholar 

  35. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467

    Article  CAS  PubMed  Google Scholar 

  36. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  37. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506

    Article  CAS  PubMed  Google Scholar 

  38. Yoshida Y, Hayashi A, Arima M (1985) Rapid rejoining of X-ray-induced DNA single-strand breaks in tuberous sclerosis fibroblasts. Mutat Res 146(2):211–218

    CAS  PubMed  Google Scholar 

  39. Matsumura H, Takimoto H, Shimada N, Hirata M, Ohnishi T, Hayakawa T (1998) Glioblastoma following radiotherapy in a patient with tuberous sclerosis. Neurol Med Chir 38(5):287–291

    Article  CAS  Google Scholar 

  40. Curatolo P, Bjornvold M, Dill PE, Ferreira JC, Feucht M, Hertzberg C, Jansen A, Jozwiak S et al (2016) The role of mTOR inhibitors in the treatment of patients with tuberous sclerosis complex: evidence-based and expert opinions. Drugs 76(5):551–565. doi:10.1007/s40265-016-0552-9

    Article  CAS  PubMed  Google Scholar 

  41. Curatolo P, Moavero R (2012) mTOR inhibitors in tuberous sclerosis complex. Curr Neuropharmacol 10(4):404–415. doi:10.2174/157015912804143595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost MD, Kuperman R, Witt O, Kohrman MH et al (2016) Long-term use of everolimus in patients with tuberous sclerosis complex: final results from the EXIST-1 study. PLoS One 11(6):e0158476. doi:10.1371/journal.pone.0158476

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Plan Cancer/AVIESAN grants, the Commissariat General à l’Investissement (Programmes Investissement d’avenir—projet INDIRA), the Association Pour la Recherche sur l’Ataxie-Telangiectasie (APRAT) and the Association Neurofibromatose et Recklinghausen (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Foray.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferlazzo, M.L., Bach-Tobdji, M.K.E., Djerad, A. et al. Radiobiological Characterization of Tuberous Sclerosis: a Delay in the Nucleo-Shuttling of ATM May Be Responsible for Radiosensitivity. Mol Neurobiol 55, 4973–4983 (2018). https://doi.org/10.1007/s12035-017-0648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0648-6

Keywords

Navigation