Skip to main content

Advertisement

Log in

Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193. doi:10.1038/nrn1867

    Article  CAS  PubMed  Google Scholar 

  2. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  CAS  PubMed  Google Scholar 

  3. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 120(1):29–40. doi:10.1172/JCI40543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mimeault M, Batra SK (2006) Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24(11):2319–2345

    Article  CAS  PubMed  Google Scholar 

  5. Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788. doi:10.1038/nrm1739

    Article  PubMed  Google Scholar 

  6. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. doi:10.1016/j.cell.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  7. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271(5251):978–981

    Article  CAS  PubMed  Google Scholar 

  8. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702. doi:10.1016/j.neuron.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience 26(1):3–11. doi:10.1523/JNEUROSCI.3648-05.2006

    Article  CAS  Google Scholar 

  10. Xavier JM, Rodrigues CM, Sola S (2015) Mitochondria: Major regulators of neural development. Neuroscientist. doi:10.1177/1073858415585472

    PubMed  Google Scholar 

  11. Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G (2013) Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep 5(6):1564–1575. doi:10.1016/j.celrep.2013.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kasahara A, Scorrano L (2014) Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol 24(12):761–770. doi:10.1016/j.tcb.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  13. Ito K, Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15(4):243–256. doi:10.1038/nrm3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holley AK, Dhar SK, St Clair DK (2010) Manganese superoxide dismutase vs. p53: regulation of mitochondrial ROS. Mitochondrion 10(6):649–661. doi:10.1016/j.mito.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  15. Wang W, Esbensen Y, Kunke D, Suganthan R, Rachek L, Bjoras M, Eide L (2011) Mitochondrial DNA damage level determines neural stem cell differentiation fate. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(26):9746–9751. doi:10.1523/JNEUROSCI.0852-11.2011

    Article  CAS  Google Scholar 

  16. Cassano S, Agnese S, D'Amato V, Papale M, Garbi C, Castagnola P, Ruocco MR, Castellano I et al (2010) Reactive oxygen species, Ki-Ras, and mitochondrial superoxide dismutase cooperate in nerve growth factor-induced differentiation of PC12 cells. J Biol Chem 285(31):24141–24153. doi:10.1074/jbc.M109.098525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Austin S, St-Pierre J (2012) PGC1alpha and mitochondrial metabolism—emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125(Pt 21):4963–4971. doi:10.1242/jcs.113662

    Article  CAS  PubMed  Google Scholar 

  18. Rangwala SM, Li X, Lindsley L, Wang X, Shaughnessy S, Daniels TG, Szustakowski J, Nirmala NR et al (2007) Estrogen-related receptor alpha is essential for the expression of antioxidant protection genes and mitochondrial function. Biochem Biophys Res Commun 357(1):231–236. doi:10.1016/j.bbrc.2007.03.126

    Article  CAS  PubMed  Google Scholar 

  19. Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 101(12):2790–2799. doi:10.1172/JCI1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ (1998) Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 4(3):165–178

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sola S, Brito MA, Brites D, Moura JJ, Rodrigues CM (2002) Membrane structural changes support the involvement of mitochondria in the bile salt-induced apoptosis of rat hepatocytes. Clin Sci (Lond) 103(5):475–485. doi:10.1042/cs1030475

  22. Rodrigues CM, Sola S, Nan Z, Castro RE, Ribeiro PS, Low WC, Steer CJ (2003) Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc Natl Acad Sci U S A 100(10):6087–6092. doi:10.1073/pnas.1031632100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keene CD, Rodrigues CM, Eich T, Chhabra MS, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington's disease. Proc Natl Acad Sci U S A 99(16):10671–10676. doi:10.1073/pnas.162362299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramalho RM, Viana RJ, Castro RE, Steer CJ, Low WC, Rodrigues CM (2008) Apoptosis in transgenic mice expressing the P301L mutated form of human tau. Mol Med 14(5–6):309–317

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nunes AF, Amaral JD, Lo AC, Fonseca MB, Viana RJ, Callaerts-Vegh Z, D’Hooge R, Rodrigues CM (2012) TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-beta deposition in APP/PS1 mice. Mol Neurobiol 45(3):440–454. doi:10.1007/s12035-012-8256-y

    Article  CAS  PubMed  Google Scholar 

  26. Duan WM, Rodrigues CM, Zhao LR, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson's disease. Cell Transplant 11(3):195–205

    Google Scholar 

  27. Xavier JM, Morgado AL, Rodrigues CM, Sola S (2014) Tauroursodeoxycholic acid increases neural stem cell pool and neuronal conversion by regulating mitochondria-cell cycle retrograde signaling. Cell Cycle 13(22):3576–3589. doi:10.4161/15384101.2014.962951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Agasse F, Bernardino L, Kristiansen H, Christiansen SH, Ferreira R, Silva B, Grade S, Woldbye DP et al (2008) Neuropeptide Y promotes neurogenesis in murine subventricular zone. Stem Cells 26(6):1636–1645. doi:10.1634/stemcells.2008-0056

    Article  CAS  PubMed  Google Scholar 

  29. Wojtowicz JM, Kee N (2006) BrdU assay for neurogenesis in rodents. Nat Protoc 1(3):1399–1405. doi:10.1038/nprot.2006.224

    Article  CAS  PubMed  Google Scholar 

  30. Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39(5):749–765

    Article  CAS  PubMed  Google Scholar 

  31. Thiel G (2013) How Sox2 maintains neural stem cell identity. The Biochemical journal 450(3):e1–e2. doi:10.1042/BJ20130176

    Article  CAS  PubMed  Google Scholar 

  32. Xapelli S, Agasse F, Sarda-Arroyo L, Bernardino L, Santos T, Ribeiro FF, Valero J, Braganca J et al (2013) Activation of type 1 cannabinoid receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures. PLoS One 8(5):e63529. doi:10.1371/journal.pone.0063529

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shen Q, Zhong W, Jan YN, Temple S (2002) Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129(20):4843–4853

    CAS  PubMed  Google Scholar 

  34. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116(1):201–211

    CAS  PubMed  Google Scholar 

  35. Xavier JM, Morgado AL, Sola S, Rodrigues CM (2014) Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal 21(7):1009–1024. doi:10.1089/ars.2013.5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caceres A, Banker GA, Binder L (1986) Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. The Journal of neuroscience : the official journal of the Society for Neuroscience 6(3):714–722

    Article  CAS  Google Scholar 

  37. Vukovic J, Borlikova GG, Ruitenberg MJ, Robinson GJ, Sullivan RK, Walker TL, Bartlett PF (2013) Immature doublecortin-positive hippocampal neurons are important for learning but not for remembering. The Journal of neuroscience : the official journal of the Society for Neuroscience 33(15):6603–6613. doi:10.1523/JNEUROSCI.3064-12.2013

    Article  CAS  Google Scholar 

  38. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322. doi:10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  39. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  PubMed  Google Scholar 

  40. Gil-Perotin S, Duran-Moreno M, Cebrian-Silla A, Ramirez M, Garcia-Belda P, Garcia-Verdugo JM (2013) Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec (Hoboken) 296(9):1435–1452. doi:10.1002/ar.22746

    Article  Google Scholar 

  41. Weinberg D, Adams C, Chari D (2015) Deploying clinical grade magnetic nanoparticles with magnetic fields to magnetolabel neural stem cells in adherent versus suspension cultures. RSC Adv 5(54):43353–43360

    Article  CAS  Google Scholar 

  42. Jensen JB, Parmar M (2006) Strengths and limitations of the neurosphere culture system. Mol Neurobiol 34(3):153–161. doi:10.1385/MN:34:3:153

    Article  CAS  PubMed  Google Scholar 

  43. Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM (2009) Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 50(9):1721–1734. doi:10.1194/jlr.R900011-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27(7):728–735. doi:10.1210/er.2006-0037

    Article  CAS  PubMed  Google Scholar 

  45. Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, Oakeley EJ, Kralli A (2004) The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 101(17):6472–6477. doi:10.1073/pnas.0308686101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mozdy AD, Shaw JM (2003) A fuzzy mitochondrial fusion apparatus comes into focus. Nat Rev Mol Cell Biol 4(6):468–478. doi:10.1038/nrm1125

    Article  CAS  PubMed  Google Scholar 

  47. Scott SV, Cassidy-Stone A, Meeusen SL, Nunnari J (2003) Staying in aerobic shape: how the structural integrity of mitochondria and mitochondrial DNA is maintained. Curr Opin Cell Biol 15(4):482–488

    Article  CAS  PubMed  Google Scholar 

  48. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72(1):101–163

    Article  CAS  PubMed  Google Scholar 

  49. Hernandez-Benitez R, Pasantes-Morales H, Saldana IT, Ramos-Mandujano G (2010) Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells. J Neurosci Res 88(8):1673–1681. doi:10.1002/jnr.22328

    CAS  PubMed  Google Scholar 

  50. Shivaraj MC, Marcy G, Low G, Ryu JR, Zhao X, Rosales FJ, Goh EL (2012) Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS One 7(8):e42935. doi:10.1371/journal.pone.0042935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang YZ, Plane JM, Jiang P, Zhou CJ, Deng W (2011) Concise review: quiescent and active states of endogenous adult neural stem cells: identification and characterization. Stem Cells 29(6):907–912. doi:10.1002/stem.644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Piccin D, Morshead CM (2010) Potential and pitfalls of stem cell therapy in old age. Dis Model Mech 3(7–8):421–425. doi:10.1242/dmm.003137

    Article  PubMed  Google Scholar 

  53. Dirks PB (2008) Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philos Trans R Soc Lond Ser B Biol Sci 363(1489):139–152. doi:10.1098/rstb.2006.2017

    Article  CAS  Google Scholar 

  54. Ihrie RA, Alvarez-Buylla A (2011) Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70(4):674–686. doi:10.1016/j.neuron.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Riddle DR, Lichtenwalner RJ (2007) Neurogenesis in the Adult and Aging Brain. In: Riddle DR (ed) Brain Aging: Models, Methods, and Mechanisms. Frontiers in Neuroscience. Boca Raton (FL) Chapter 6 I B.2,

  56. Silver I, Erecinska M (1998) Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv Exp Med Biol 454:7–16

    Article  CAS  PubMed  Google Scholar 

  57. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766. doi:10.1016/j.neuron.2008.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM (2015) An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162(3):540–551. doi:10.1016/j.cell.2015.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119(Pt 14):2855–2862. doi:10.1242/jcs.03062

    Article  CAS  PubMed  Google Scholar 

  60. Fischer F, Hamann A, Osiewacz HD (2012) Mitochondrial quality control: an integrated network of pathways. Trends Biochem Sci 37(7):284–292. doi:10.1016/j.tibs.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  61. Wu S, Zhou F, Zhang Z, Xing D (2011) Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J 278(6):941–954. doi:10.1111/j.1742-4658.2011.08010.x

    Article  CAS  PubMed  Google Scholar 

  62. Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817(10):1833–1838. doi:10.1016/j.bbabio.2012.02.033

    Article  CAS  PubMed  Google Scholar 

  63. Winslow T (2006) Repairing the nervous system with stem cells. In: Prometheus (ed) Regenerative Medicine. pp 35–43

Download references

Acknowledgements

The authors wish to thank M.Sc. Ana Moreira and Rui Rodrigues as well as Dr. Rita Aroeira (Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal) for their assistance in neurosphere cultures and immunohistochemistry. We would also like to thank all members of the iMed.ULisboa and iMM laboratories for insightful discussions. This work was supported by grant UID/DTP/04138/2013 from Fundação para a Ciência e Tecnologia, Lisbon, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Solá.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

Sprague-Dawley rats were acquired from Charles River (France). All experimental procedures were in accordance with current Portuguese laws on Animal Care and with the European Union Directive (86/609/EEC; 2010/63/EU; 2012/707/EU), on the protection of animals used for experimental and other scientific purposes. All efforts were made to minimize animal suffering and reduce numbers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, R., Ribeiro, F.F., Xapelli, S. et al. Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats. Mol Neurobiol 55, 3725–3738 (2018). https://doi.org/10.1007/s12035-017-0592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0592-5

Keywords

Navigation