Skip to main content

Advertisement

Log in

Radial Glia Cells Control Angiogenesis in the Developing Cerebral Cortex Through TGF-β1 Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroangiogenesis in the developing central nervous system is controlled by interactions between endothelial cells (ECs) and radial glia (RG) neural stem cells, although RG-derived molecules implicated in these events are not fully known. Here, we investigated the role of RG-secreted TGF-β1, in angiogenesis in the developing cerebral cortex. By isolation of murine microcapillary brain endothelial cells (MBECs), we demonstrate that conditioned medium from RG cultures (RG-CM) promoted MBEC migration and formation of vessel-like structures in vitro, in a TGF-β1-dependent manner. These events were followed by endothelial regulation of GPR124 and BAI-1 gene expression by RG-CM. Proteome profile of RG-CM identified angiogenesis-related molecules IGFBP2/3, osteopontin, endostatin, SDF1, fractalkine, TIMP1/4, Ang-1, pentraxin3, and Cyr61, some of them modulated by TGF-β1 induction. In vivo gain and loss of function assays targeting RG cells demonstrates a specific TGF-β1-dependent control of blood vessels branching in the cerebral cortex. Together, our results point to TGF-β1 signaling pathway as a potential mediator of the RG-EC interactions and shed light to the key role of RG in paving the brain vascular network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Walchli T, Wacker A, Frei K, Regli L, Schwab ME, Hoerstrup SP, Gerhardt H, Engelhardt B (2015) Wiring the vascular network with neural cues: a CNS perspective. Neuron 87:271–296

    Article  CAS  PubMed  Google Scholar 

  2. Abbot NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23

    Article  Google Scholar 

  3. Kim JH, Park JA, Lee SW, Kim WJ, Yu YS, Kim KW (2006) Blood-neural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol 39:339–345

    CAS  PubMed  Google Scholar 

  4. Takahashi T, Takase Y, Yoshino T, Saito D, Tadokoro R, Takahashi Y (2015) Angiogenesis in the developing spinal cord: blood vessel exclusion from neural progenitor region is mediated by VEGF and its antagonists. PLoS One 10:e0116119

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rakic P (1999) Neurobiology. Discriminating migrations. Nature 400:315–316

    Article  CAS  PubMed  Google Scholar 

  6. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    Article  CAS  PubMed  Google Scholar 

  7. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ortega JA, Alcantara S (2010) BDNF/MAPK/ERK-induced BMP7 expression in the developing cerebral cortex induces premature radial glia differentiation and impairs neuronal migration. Cereb Cortex 20:2132–2144

    Article  PubMed  Google Scholar 

  9. Barbabé-Heider F, Wasylnka JA, Fernandes KJ, Porsche C, Sendtner M, Kaplan DR, Miller FD (2005) Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48:253–265

    Article  Google Scholar 

  10. Stipursky J, Gomes FCA (2007) TGF-beta1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development. Glia 55:1023–1033

    Article  PubMed  Google Scholar 

  11. Stipursky J, Francis D, Gomes FCA (2012) Activation of MAPK/PI3K/SMAD pathways by TGF-beta(1) controls differentiation of radial glia into astrocytes in vitro. Dev Neurosci 34:68–81

    Article  CAS  PubMed  Google Scholar 

  12. Stipursky J, Francis D, Dezonne RS, Bérgamo de Araújo AP, Souza L, Moraes CA, Gomes FCA (2014) TGF-β1 promotes cerebral cortex radial glia-astrocyte differentiation in vivo. Front Cell Neurosci 8:393

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kessaris N, Pringle N, Richardson WD (2008) Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Philos Trans R Soc Lond Ser B Biol Sci 363:71–85

    Article  CAS  Google Scholar 

  14. Morest DK, Silver J (2003) Precursors of neurons, neuroglia, and ependymal cells in the CNS: what are they? Where are they from? How do they get where they are going? Glia 43:6–18

    Article  PubMed  Google Scholar 

  15. Ma S, Kwon HJ, Johng H, Zang GK, Huang Z (2013) Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLoS Biol 11:e1001469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Virgintino D, Errede M, Robertson D, Girolamo F, Masciandaro A, Bertossi M (2003) VEGF expression is developmentally regulated during human brain angiogenesis. Histochem Cell Biol 119:227–232

    CAS  PubMed  Google Scholar 

  17. Hellbach N, Weise SC, Vezzali R, Wahane SD, Heidrich S, Roidl D, Pruszak J, Esser JS et al (2012) Neural deletion of Tgfbr2 impairs angiogenesis through an altered secretome. Hum Mol Genet 23:6177–6190

    Article  Google Scholar 

  18. Massagué J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  PubMed  Google Scholar 

  19. Massagué J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580:2811–2820

    Article  PubMed  Google Scholar 

  20. Gantus MA, Alves LM, Stipursky J, Souza EC, Teodoro AJ, Alves TR, Carvalho DP, Martinez AM et al (2011) Estradiol modulates TGF-β1 expression and its signaling pathway in thyroid stromal cells. Mol Cell Endocrinol 337:71–79

    Article  CAS  PubMed  Google Scholar 

  21. Brionne TC, Tesseur I, Masliah E, Wyss-Coray T (2003) Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40:1133–1145

    Article  CAS  PubMed  Google Scholar 

  22. Siegenthaler JA, Miller MW (2004) Transforming growth factor beta1 modulates cell migration in rat cortex: effects of ethanol. Cereb Cortex 14:791–802

    Article  PubMed  Google Scholar 

  23. Romão LF, de Sousa VO, Neto VM, Gomes FCAA (2008) Glutamate activates GFAP gene promoter from cultured astrocytes through TGF-beta1 pathways. J Neurochem 106:746–756

    Article  PubMed  Google Scholar 

  24. Sousa VO, Romão L, Moura Neto V, Gomes FCA (2004) Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions. Eur J Neurosci 19:1721–1730

    Article  Google Scholar 

  25. Diniz LP, Almeida JC, Tortelli V, Vargas-Lopes C, Setti-Perdigão P, Stipursky J, Kahn SA, Romão LF et al (2012) Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 287:41432–41445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Diniz LP, Tortelli V, Garcia MN, Araújo AP, Melo HM, Silva GS, Felice FG, Alves-Leon SV et al (2014) Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling. Glia 62:1917–1931

    Article  PubMed  Google Scholar 

  27. Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43

    Article  CAS  PubMed  Google Scholar 

  28. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97:2626–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nguyen HL, Lee YJ, Shin J, Lee E, Park SO, Mccarty JH, Oh SP (2011) TGF-beta signaling in endothelial cells, but not neuroepithelial cells, is essential for cerebral vascular development. Lab Investig 91:1554–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garcia CM, Daland DC, Massingham LJ, D'amore PA (2004) Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res 152:25–38

    Article  CAS  PubMed  Google Scholar 

  31. Goumans MJ, Valdimarstottir G, Itoh S, Rosendahl A, Sideras P, Ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21:1743–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM et al (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23:4018–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Merwin JR, Anderson JM, Kocher O, Van Itallie CM, Madri JA (1990) Transforming growth factor beta 1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis. J Cell Physiol 142:117–128

    Article  CAS  PubMed  Google Scholar 

  34. Pardali E, Goumans MJ, Ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20:556–567

    Article  CAS  PubMed  Google Scholar 

  35. Ray BN, Lee NY, How T, Blobe GC (2010) ALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration. Carcinogenesis 31:435–441

    Article  CAS  PubMed  Google Scholar 

  36. Wang HH, Su CH, Wu YJ, Li JY, Tseng YM, Lin YC, Hsieh CL, Tsai CH et al (2013) Reduction of connexin43 in human endothelial progenitor cells impairs the angiogenic potential. Angiogenesis 16:553–560

    Article  CAS  PubMed  Google Scholar 

  37. Mecha M, Rabadan MA, Pena-Melian A, Valencia M, Mondejar T, Blanco MJ (2008) Expression of TGF-betas in the embryonic nervous system: analysis of interbalance between isoforms. Dev Dyn 237:1709–1717

    Article  CAS  PubMed  Google Scholar 

  38. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    Article  CAS  PubMed  Google Scholar 

  39. Stins MF, Prasadarao NV, Zhou J, Arditi M, Kim KS (1997) Bovine brain microvascular endothelial cells transfected with SV40-large T antigen: development of an immortalized cell line to study pathophysiology of CNS disease. In Vitro Cell Dev Biol Anim 4:243–247

    Article  Google Scholar 

  40. Livak KJ, Schmittgen TDL (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 4:402–408

    Article  Google Scholar 

  41. Walantus W, Castaneda D, Elias L, Kriegstein A (2007) In utero intraventricular injection and electroporation of E15 mouse embryos. J Vis Exp 6:239

    Google Scholar 

  42. Zudaire E, Gambardella L, Kurcz C, Vermeren S (2011) A computational tool for quantitative analysis of vascular networks. PLoS One 6:e27385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McCarty JH (2005) Cell biology of the neurovascular unit: implications for drug delivery across the blood–brain barrier. Assay Drug Dev Technol 3:89–95

    Article  CAS  PubMed  Google Scholar 

  44. Hatzopoulos AK, Folkman J, Vasile E, Eiselen GK, Rosenberg RD (1998) Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 125:1457–1468

    CAS  PubMed  Google Scholar 

  45. Lamszus K, Schmidt NO, Ergun S, Westphal M (1999) Isolation and culture of human neuromicrovascular endothelial cells for the study of angiogenesis in vitro. J Neurosci Res 55:370–381

    Article  CAS  PubMed  Google Scholar 

  46. Lippmann, E.S., Weidenfeller, C., ; Svendsen, C.N. and Shusta, E.V. (2011). Blood-brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem 119, 507–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu Y, Xue Q, Tang Q, Hoe M, Qi H, Chen G, Chen W, Zhang J et al (2013) A simple method for isolating and culturing the rat brain microvascular endothelial cells. Microvasc Res 90:199–205

    Article  CAS  PubMed  Google Scholar 

  48. Navone SE, Marfia G, Invernici G, Cristini S, Nava S, Balbi S, Sangiorgi S, Ciusani E et al (2013) Isolation and expansion of human and mouse brain microvascular endothelial cells. Nat Protoc 8:1680–1693

    Article  CAS  PubMed  Google Scholar 

  49. Wu Z, Hofman FM, Zlokovic BV (2003) A simple method for isolation and characterization of mouse brain microvascular endothelial cells. J Neurosci Methods 130:53–63

    Article  CAS  PubMed  Google Scholar 

  50. Marelli-Berg FM, Peek E, Lidington EA, Stauss HJ, Lechler RI (2000) Isolation of endothelial cells from murine tissue. J Immunol Methods 244:205–215

    Article  CAS  PubMed  Google Scholar 

  51. Introna M, Alles VV, Castellano M, Picardi G, De Gioia L, Bottazzai B, Peri G, Breviario F et al (1996) Cloning of mouse ptx3, a new member of the pentraxin gene family expressed at extrahepatic sites. Blood 87:1862–1872

    CAS  PubMed  Google Scholar 

  52. Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M (2013) Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 10:33

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fontijn RD, Rohlena J, Van Marle J, Pannekoek H, Horrevoets AJ (2006) Limited contribution of claudin-5-dependent tight junction strands to endothelial barrier function. Eur J Cell Biol 85:1131–1144

    Article  CAS  PubMed  Google Scholar 

  54. Paolinelli R, Corada M, Ferrarini L, Devraj K, Arturs C, Czupalla CJ, Rudini N, Maddaluno L et al (2013) Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS One 8:e70233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shayan G, Shuler ML, Lee KH (2011) The effect of astrocytes on the induction of barrier properties in aortic endothelial cells. Biotechnol Prog 4:1137–1145

    Article  Google Scholar 

  56. Takeshita Y, Obermeier B, Cotleur A, Sano Y, Kanda T, Ransohoff RM (2014) An in vitro blood-brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. J Neurosci Methods 232:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ottone C, Parrinello S (2015) Multifaceted control of adult SVZ neurogenesis by the vascular niche. Cell Cycle 14:2222–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goldberg JS, Hirschi KK (2009) Diverse roles of the vasculature within the neural stem cell niche. Regen Med 6:879–897

    Article  Google Scholar 

  59. Hirota S, Clements TP, Tang LK, Morales JE, Lee HS, Oh SP, Rivera GM, Wagner DS et al (2015) Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development 24:4363–4373

    Article  Google Scholar 

  60. Javelaud D, Mauviel A (2005) Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 24:5742–5750

    Article  CAS  PubMed  Google Scholar 

  61. Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood-brain barrier development. Int J Dev Biol 55:467–476

    Article  CAS  PubMed  Google Scholar 

  62. Armendáriz BG, del Masdeu MM, Soriano E, Urena JM, Burgaya F (2014) The diverse roles and multiple forms of focal adhesion kinase in brain. Eur J Neurosci 40:3573–3590

    Article  PubMed  Google Scholar 

  63. Schlaepfer DD, Mitra SK (2004) Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 1:92–101

    Article  Google Scholar 

  64. Arnold TD, Niaudet C, Pang MF, Siegenthaler J, Gaengel K, Jung B, Ferrero GM, Mukouyama YS et al (2014) Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development 23:4489–4499

    Article  Google Scholar 

  65. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  CAS  PubMed  Google Scholar 

  66. Brzozowa M, Wojnicz R, Kowalczyk-Ziomek G, Helewski K (2013) The Notch ligand Delta-like 4 (DLL4) as a target in angiogenesis-based cancer therapy? Contemp Oncol (Pozn) 3:234–237

    Google Scholar 

  67. Aspalter IM, Gordon E, Dubrac A, Ragab A, Narloch J, Vizán P, Geudens I, Collins RT et al (2015) Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun 6:7264

    Article  PubMed  PubMed Central  Google Scholar 

  68. Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR, Dominguez MG, Simmons MV, Burfeind P et al (2011) Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. PNAS 108:2807–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V, Florek M, Su H, Fruttiger M et al (2010) Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330:985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P (2009) Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J Cell Physiol 219(2):449–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Özkan A, Biçer A, Avşar T, Şeker A, Toktaş ZO, Bozkurt SU, Başak AN, Kılıç T (2012) Temporal expression analysis of angiogenesis-related genes in brain development. Vascular Cell 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  72. Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23(6):824–854

    Article  CAS  PubMed  Google Scholar 

  73. Forbes B, McCarthy P, Norton R (2012) Insulin-like growth factor binding proteins: a structural perspective. Front Endocrinol 3:38

    Article  Google Scholar 

  74. Nieto-Estévez V, Defterali Ç, Vicario-Abejón C (2016) IGF-I: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. Front Neurosci 10

  75. Dai J, Peng L, Fan K, Wang H, Wei R, Ji G, Cai J, Lu B et al (2009) Osteopontin iduces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 28:3412–3422

    Article  CAS  PubMed  Google Scholar 

  76. Rabenstein M, Hucklenbroich J, Willuweit A, Ladwig A, Fink GR, Schroeter M, Langen K-J, Rueger MA (2015) Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4. Stem cell research & therapy 6(1):1

    Article  CAS  Google Scholar 

  77. Wang Y, Yan W, Lu X, Qian C, Zhang J, Li P, Shi L, Zhao P et al (2011) Overexpression of Osteopontin induces angiogenesis of endothelial progenitor cells via the avβ3/P13K/AKT/eNOS/NO signaling pathway in glioma cells. Eur J Cell Biol 90(8):642–648

    Article  CAS  PubMed  Google Scholar 

  78. Stettle EM, Galileo DS (2004) Radial glia produce and align the ligand fibronectin during neuronal migration in the developing chick brain. J Comp Neurol 468(3):441–451

    Article  Google Scholar 

  79. Chirco R, Liu XW, Jung KK, Kim HR (2006) Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25:99–113

    Article  CAS  PubMed  Google Scholar 

  80. Errede M, Girolamo F, Rizzi M, Bertossi M, Roncali L, Virgintino D (2014) The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development. Front Neurosci 8:324

    Article  PubMed  PubMed Central  Google Scholar 

  81. Klenotic PA, Zhang C, Lin Z (2016) Emerging roles of CCN proteins in vascular development and pathology. J Cell Commun Signal 3:251–257

    Article  Google Scholar 

  82. Kurundkar AR, Kurundkar D, Rangarajan S, Locy ML, Zhou Y, Liu RM, Zmijewski J, Thannickal VJ (2016) The matricellular protein CCN1 enhances TGF-β1/SMAD3-dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury. FASEB J 6:2135–2150

    Article  Google Scholar 

  83. Rodriguez-Grande B, Varghese L, Molina-Holgado F, Rajkovic O, Garlanda C, Denes A, Pinteaux E (2015) Pentraxin 3 mediates neurogenesis and angiogenesis after cerebral ischaemia. J Neuroinflammation 12:15

    Article  PubMed  PubMed Central  Google Scholar 

  84. Savarin-Vuaillat C, Ransohoff RM (2007) Chemokines and chemokine receptors in neurological disease: raise, retain, or reduce? Neurotherapeutics 4:590–601

    Article  CAS  PubMed  Google Scholar 

  85. Thirumangalakudi L, Samany PG, Owoso A, Wiskar B, Grammas P (2006) Angiogenic proteins are expressed by brain blood vessels in Alzheimer’s disease. J Alzheimers Dis 1:111–118

    Article  Google Scholar 

  86. Thomas M, Augustin HG (2009) The role of the angiopoietins in vascular morphogenesis. Angiogenesis 2:125–137

    Article  Google Scholar 

  87. Yamanaka R, Tanaka R (2004) Gene therapy of brain tumor with endostatin. Drugs Today (Barc) 11:931–934

    Article  Google Scholar 

  88. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kostourou V, Papalazarou V (2014) Non-collagenous ECM proteins in blood vessel morphogenesis and cancer. Biochem Biophys Acta 1840:2403–2413

    Article  CAS  PubMed  Google Scholar 

  90. Gomes FCA, de Sousa VO, Romão L (2005) Emerging roles for TGF-β1 in nervous system development. Int J Dev Neurosci 23:413–424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marcelo Meloni and Adiel Batista do Nascimento for technical assistance. We also thank Dr. Dennis Grab from The Johns Hopkins University that kindly provided us with the HBMECs.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and D.F. performed MBEC isolation, morphological and functional characterization, RT-PCR and RT-qPCR, Matrigel assays, RG-EC interaction experiments, and Proteome analysis. D.G. produced migration, FAK, Dll4, and TGF-β1 signaling analysis in MBEC, and VEGF expression data on RG cells. F.C.A.G. contributed to data analysis, interpretation, and paper writing. J.S. performed in vivo IUE and IV experiments and data analysis, analyzed all the data, designed the entire project and experimental approaches, and wrote the paper.

Corresponding author

Correspondence to Joice Stipursky.

Ethics declarations

All animal protocols were approved by the Animal Research Committee of the Federal University of Rio de Janeiro (DAHEICB024 and CEUA 041/14).

Competing Interests

The authors declare that they have no conflict of interest.

Funding

This work was supported by grants from: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (J.S.; F.C.A.G.) and Conselho Nacional para o Desenvolvimento Científico e Tecnológico (J.S.; F.C.A.G.; S.M.; D.F.).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, M., Francis, D., Gisbert, D. et al. Radial Glia Cells Control Angiogenesis in the Developing Cerebral Cortex Through TGF-β1 Signaling. Mol Neurobiol 55, 3660–3675 (2018). https://doi.org/10.1007/s12035-017-0557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0557-8

Keywords

Navigation