Skip to main content
Log in

Folic Acid Protects Against Glutamate-Induced Excitotoxicity in Hippocampal Slices Through a Mechanism that Implicates Inhibition of GSK-3β and iNOS

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Folic acid (folate) is a vitamin of the B-complex group crucial for neurological function. Considering that excitotoxicity and cell death induced by glutamate are involved in many disorders, the potential protective effect of folic acid on glutamate-induced cell damage in rat hippocampal slices and the possible intracellular signaling pathway involved in such effect were investigated. The treatment of hippocampal slices with folic acid (100 μM) significantly abrogated glutamate (1 mM)-induced reduction of cell viability measured by MTT reduction assay and inhibited glutamate-induced D-[3H]-aspartate release. To investigate the putative intracellular signaling pathways implicated in the protective effect of folic acid, we used a PI3K inhibitor, LY294002, which abolished the protective effects of folic acid against glutamate-induced cell damage and D-[3H] aspartate release. Moreover, hippocampal slices incubated with folic acid alone for 30 min presented increased phosphorylation of GSK-3β at Ser9, indicating an inhibition of the activity of this enzyme. Furthermore, folic acid in the presence of glutamate insult in hippocampal slices maintained for an additional period of 6 h in fresh culture medium without glutamate and/or folic acid induced phosphorylation of GSK-3β and β-catenin expression. In addition, glutamate-treated hippocampal slices showed increased iNOS expression that was reversed by folic acid. In conclusion, the results of this study show that the protective effect of folic acid against glutamate-induced excitotoxicity may involve the modulation of PI3K/GSK-3β/β-catenin pathway and iNOS inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FA:

Folic acid

Glu:

Glutamate

GSK3β:

Glycogen synthase kinase 3β

LY 294002:

[2-(4-Morpholinyl)-8-phenyl-4H-1benzo-pyran-4-one

iNOS:

Inducible nitric oxide synthase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NO:

Nitric oxide

PI3K:

phosphoinisitide-3 kinase

References

  1. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 1144:97–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Severino PC, Muller Gdo A, Vandresen-Filho S, Tasca CI (2011) Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Life Sci 89(15–16):570–576

    Article  CAS  PubMed  Google Scholar 

  3. Verkhratsky A, Kirchhoff F (2007) Glutamate-mediated neuronal-glial transmission. J Anat 210(6):651–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542

    Article  CAS  PubMed  Google Scholar 

  5. Olney JW (1969) Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J Neuropathol Exp Neurol 28(3):455–474

    Article  CAS  PubMed  Google Scholar 

  6. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565

    Article  CAS  PubMed  Google Scholar 

  7. Molz S, Decker H, Dal-Cim T, Cremonez C, Cordova FM, Leal RB, Tasca CI (2008) Glutamate-induced toxicity in hippocampal slices involves apoptotic features and p38 MAPK signaling. Neurochem Res 33(1):27–36

    Article  CAS  PubMed  Google Scholar 

  8. Molz S, Tharine DC, Decker H, Tasca CI (2008) GMP prevents excitotoxicity mediated by NMDA receptor activation but not by reversal activity of glutamate transporters in rat hippocampal slices. Brain Res 1231:113–120

    Article  CAS  PubMed  Google Scholar 

  9. Molz S, Dal-Cim T, Budni J, Martin-de-Saavedra MD, Egea J, Romero A, del Barrio L, Rodrigues AL et al (2011) Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/ glycogen synthase kinase 3beta pathway activation and inducible nitric oxide synthase inhibition. J Neurosci Res 89(9):1400–1408

    Article  CAS  PubMed  Google Scholar 

  10. Pannu R, Singh I (2006) Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem Int 49(2):170–182

    Article  CAS  PubMed  Google Scholar 

  11. Saha RN, Pahan K (2006) Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8(5–6):929–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23(3):153–165

    Article  CAS  PubMed  Google Scholar 

  13. Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7(4):347–358

    Article  CAS  PubMed  Google Scholar 

  14. Vruwink M, Schmidt HH, Weinberg RJ, Burette A (2001) Substance P and nitric oxide signaling in cerebral cortex: anatomical evidence for reciprocal signaling between two classes of interneurons. J Comp Neurol 441(4):288–301

    Article  CAS  PubMed  Google Scholar 

  15. Licinio J, Prolo P, McCann SM, Wong ML (1999) Brain iNOS: current understanding and clinical implications. Mol Med Today 5(5):225–232

    Article  CAS  PubMed  Google Scholar 

  16. Lopez-Figueroa MO, Day HE, Lee S, Rivier C, Akil H, Watson SJ (2000) Temporal and anatomical distribution of nitric oxide synthase mRNA expression and nitric oxide production during central nervous system inflammation. Brain Res 852(1):239–246

    Article  CAS  PubMed  Google Scholar 

  17. Moro MA, Cardenas A, Hurtado O, Leza JC, Lizasoain I (2004) Role of nitric oxide after brain ischaemia. Cell Calcium 36(3–4):265–275

    Article  CAS  PubMed  Google Scholar 

  18. Nomura Y (1998) A transient brain ischemia- and bacterial endotoxin-induced glial iNOS expression and NO-induced neuronal apoptosis. Toxicol Lett 102-103:65–69

    Article  CAS  PubMed  Google Scholar 

  19. Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Fernandez AP, Rodrigo J, Bosca L, Leza JC (2000) Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 74(2):785–791

    Article  CAS  PubMed  Google Scholar 

  20. Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26(3):137–146

    Article  CAS  PubMed  Google Scholar 

  21. Coppen A, Bolander-Gouaille C (2005) Treatment of depression: time to consider folic acid and vitamin B12. J Psychopharmacol 19(1):59–65

    Article  CAS  PubMed  Google Scholar 

  22. Kronenberg G, Colla M, Endres M (2009) Folic acid, neurodegenerative and neuropsychiatric disease. Curr Mol Med 9(3):315–323

    Article  CAS  PubMed  Google Scholar 

  23. Lucock M (2011) Folic acid: beyond metabolism. Journal of Evidence-Based Complementary & Alternative Medicine 16(2):102–113

    Article  CAS  Google Scholar 

  24. Liu H, Cao J, Zhang H, Qin S, Yu M, Zhang X, Wang X, Gao Y et al (2013) Folic acid stimulates proliferation of transplanted neural stem cells after focal cerebral ischemia in rats. J Nutr Biochem 24(11):1817–1822

    Article  CAS  PubMed  Google Scholar 

  25. Zeng R, Xu CH, Xu YN, Wang YL, Wang M (2015) The effect of folate fortification on folic acid-based homocysteine-lowering intervention and stroke risk: a meta-analysis. Public Health Nutr 18(8):1514–1521

    Article  PubMed  Google Scholar 

  26. Budni J, Romero A, Molz S, Martin-de-Saavedra MD, Egea J, Del Barrio L, Tasca CI, Rodrigues AL et al (2011) Neurotoxicity induced by dexamethasone in the human neuroblastoma SH-SY5Y cell line can be prevented by folic acid. Neuroscience 190:346–353

    Article  CAS  PubMed  Google Scholar 

  27. Tagliari B, Zamin LL, Salbego CG, Netto CA, Wyse AT (2006) Hyperhomocysteinemia increases damage on brain slices exposed to in vitro model of oxygen and glucose deprivation: prevention by folic acid. Int J Dev Neurosci 24(4):285–291

    Article  CAS  PubMed  Google Scholar 

  28. Yu HL, Li L, Zhang XH, Xiang L, Zhang J, Feng JF, Xiao R (2009) Neuroprotective effects of genistein and folic acid on apoptosis of rat cultured cortical neurons induced by beta-amyloid 31-35. Br J Nutr 102(5):655–662

    Article  CAS  PubMed  Google Scholar 

  29. Oliveira IJ, Molz S, Souza DO, Tasca CI (2002) Neuroprotective effect of GMP in hippocampal slices submitted to an in vitro model of ischemia. Cell Mol Neurobiol 22(3):335–344

    Article  CAS  PubMed  Google Scholar 

  30. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  31. Peres TV, Ong LK, Costa AP, Eyng H, Venske DK, Colle D, Goncalves FM, Lopes MW et al (2016) Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics : integrated biometal science 8(6):597–604

    Article  CAS  Google Scholar 

  32. Leal RB, Cordova FM, Herd L, Bobrovskaya L, Dunkley PR (2002) Lead-stimulated p38MAPK-dependent Hsp27 phosphorylation. Toxicol Appl Pharmacol 178(1):44–51

    Article  CAS  PubMed  Google Scholar 

  33. Cordova FM, Rodrigues AL, Giacomelli MB, Oliveira CS, Posser T, Dunkley PR, Leal RB (2004) Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Res 998(1):65–72

    Article  CAS  PubMed  Google Scholar 

  34. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30(4):379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanacora G, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7(5):426–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brocardo PS, Budni J, Lobato KR, Kaster MP, Rodrigues AL (2008) Antidepressant-like effect of folic acid: involvement of NMDA receptors and L-arginine-nitric oxide-cyclic guanosine monophosphate pathway. Eur J Pharmacol 598(1–3):37–42

    Article  Google Scholar 

  37. Beaulieu JM (2012) A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci 37(1):7–16

    Article  PubMed  PubMed Central  Google Scholar 

  38. Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347

    Article  CAS  PubMed  Google Scholar 

  39. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675

    Article  CAS  PubMed  Google Scholar 

  40. Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784(1):159–185

    Article  CAS  PubMed  Google Scholar 

  41. Mellor P, Furber LA, Nyarko JN, Anderson DH (2012) Multiple roles for the p85alpha isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochem J 441(1):23–37

    Article  CAS  PubMed  Google Scholar 

  42. Seto SW, Lam TY, Or PM, Lee WY, Au AL, Poon CC, Li RW, Chan SW et al (2010) Folic acid consumption reduces resistin level and restores blunted acetylcholine-induced aortic relaxation in obese/diabetic mice. J Nutr Biochem 21(9):872–880

    Article  CAS  PubMed  Google Scholar 

  43. Budni J, Lobato KR, Binfare RW, Freitas AE, Costa AP, Saavedra MD, Leal RB, Lopez MG, Rodrigues AL (2012) Involvement of PI3K, GSK-3beta and PPARgamma in the antidepressant-like effect of folic acid in the forced swimming test in mice. J Psychopharmacol.

  44. Perez-Costas E, Gandy JC, Melendez-Ferro M, Roberts RC, Bijur GN (2010) Light and electron microscopy study of glycogen synthase kinase-3beta in the mouse brain. PLoS One 5(1):e8911

    Article  PubMed  PubMed Central  Google Scholar 

  45. Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor a. EMBO J 9(8):2431–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yao HB, Shaw PC, Wong CC, Wan DC (2002) Expression of glycogen synthase kinase-3 isoforms in mouse tissues and their transcription in the brain. J Chem Neuroanat 23(4):291–297

    Article  CAS  PubMed  Google Scholar 

  47. Ferrer I, Barrachina M, Puig B (2002) Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol 104(6):583–591

    CAS  PubMed  Google Scholar 

  48. Kaidanovich-Beilin O, Woodgett JR (2011) GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci 4:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sutherland C (2011) What are the bona fide GSK3 substrates? Int J Alzheimers Dis 2011:505607

    PubMed  PubMed Central  Google Scholar 

  50. Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K (2000) Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett 485(1):87–93

    Article  CAS  PubMed  Google Scholar 

  51. Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem 278(35):33067–33077

    Article  CAS  PubMed  Google Scholar 

  52. Ginsburg GT, Kimmel AR (1997) Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium. Genes Dev 11(16):2112–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Plyte SE, O’Donovan E, Woodgett JR, Harwood AJ (1999) Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3. Development (Cambridge, England) 126(2):325–333

    CAS  Google Scholar 

  54. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65(4):391–426

    Article  CAS  PubMed  Google Scholar 

  55. Kaytor MD, Orr HT (2002) The GSK3 beta signaling cascade and neurodegenerative disease. Curr Opin Neurobiol 12(3):275–278

    Article  CAS  PubMed  Google Scholar 

  56. Luo J (2012) The role of GSK3beta in the development of the central nervous system. Front Biol 7(3):212–220

    Article  CAS  Google Scholar 

  57. Bauer M, Willert K (2012) Wnt signaling: the beta-cat (enin)’s meow. Genes Dev 26(2):105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takahashi-Yanaga F, Sasaguri T (2007) The Wnt/beta-catenin signaling pathway as a target in drug discovery. J Pharmacol Sci 104(4):293–302

    Article  CAS  PubMed  Google Scholar 

  59. Coyle JT, Duman RS (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38(2):157–160

    Article  CAS  PubMed  Google Scholar 

  60. Toledo EM, Colombres M, Inestrosa NC (2008) Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol 86(3):281–296

    Article  CAS  PubMed  Google Scholar 

  61. Cárdenas A, Moro MA, Hurtado O, Leza JC, Lorenzo P, Castrillo A, Bodelon OG, Bosca L et al (2000) Implication of glutamate in the expression of inducible nitric oxide synthase after oxygen and glucose deprivation in rat forebrain slices. J Neurochem 74(5):2041–2048

    Article  PubMed  Google Scholar 

  62. Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21(17):6480–6491

    CAS  PubMed  Google Scholar 

  63. Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27(3):325–355

    Article  CAS  PubMed  Google Scholar 

  64. Figueiredo CP, Bicca MA, Latini A, Prediger RD, Medeiros R, Calixto JB (2011) Folic acid plus alpha-tocopherol mitigates amyloid-beta-induced neurotoxicity through modulation of mitochondrial complexes activity. J Alzheimers Dis 24(1):61–75

    CAS  PubMed  Google Scholar 

  65. Majumdar S, Maiti A, Karmakar S, Sekhar Das A, Mukherjee S, Das D, Mitra C (2010) Antiapoptotic efficacy of folic acid and vitamin B (12) against arsenic-induced toxicity. Environ Toxicol.

  66. Zhang X, Chen S, Li L, Wang Q, Le W (2008) Folic acid protects motor neurons against the increased homocysteine, inflammation and apoptosis in SOD1 G93A transgenic mice. Neuropharmacology 54(7):1112–1119

    Article  CAS  PubMed  Google Scholar 

  67. Feng D, Zhou Y, Xia M, Ma J (2011) Folic acid inhibits lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages by suppressing MAPKs and NF-kappaB activation. Inflamm Res 60(9):817–822

    Article  CAS  PubMed  Google Scholar 

  68. Pahan K, Raymond JR, Singh I (1999) Inhibition of phosphatidylinositol 3-kinase induces nitric-oxide synthase in lipopolysaccharide- or cytokine-stimulated C6 glial cells. J Biol Chem 274(11):7528–7536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research supported by grants from the Brazilian funding agencies: Conselho de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), CAPES/DGU Project No. 173/2008; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); IBN-Net/CNPq; NENASC project (PRONEX program CNPq/FAPESC). C.I. Tasca and A.L.S. Rodrigues are recipients of CNPq productivity fellowship. This work was also supported by grants from the Spanish Ministry of Science and Innovation SAF2009-12150, Ministry of Education PBH2007-0004-PC, and the Spanish Ministry of Health (Instituto de Salud Carlos III) RETICS-RD06/0026.

Author Contribution

JB, SM, JE, MGL, CIT, and ASR were involved in experimental design. JB, SM, TDC, MDMS, and JE were responsible for performing the work. JB, TDC, MDMS, ALSR, MGL, and CIT wrote the manuscript. All authors approved this version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josiane Budni.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budni, J., Molz, S., Dal-Cim, T. et al. Folic Acid Protects Against Glutamate-Induced Excitotoxicity in Hippocampal Slices Through a Mechanism that Implicates Inhibition of GSK-3β and iNOS. Mol Neurobiol 55, 1580–1589 (2018). https://doi.org/10.1007/s12035-017-0425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0425-6

Keywords

Navigation