Skip to main content

Advertisement

Log in

Resveratrol and Alzheimer’s Disease: Mechanistic Insights

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the leading cause of dementia in the elderly and is characterized by progressive cognitive and memory deficits. The pathological hallmarks of AD include extracellular senile plaques and intracellular neurofibrillary tangles. Although several mechanisms have been used to explain the underlying pathogenesis of AD, current treatment regimens remain inadequate. The neuroprotective effects of the polyphenolic stilbene resveratrol (3,5,4′-trihydroxy-trans-stilbene) have been investigated in several in vitro and in vivo models of AD. The current review discusses the multiple potential mechanisms of action of resveratrol on the pathobiology of AD. Moreover, due to the limited pharmacokinetic parameters of resveratrol, multiple strategies aimed at increasing the bioavailability of resveratrol have also been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Pathak L, Agrawal Y, Dhir A (2013) Natural polyphenols in the management of major depression. Expert Opin Investig Drugs 22(7):863–880

    Article  CAS  PubMed  Google Scholar 

  2. Sureda A, Tejada S (2015) Polyphenols and depression: from chemistry to medicine. Curr Pharm Biotechnol 16(3):259–264

    Article  CAS  PubMed  Google Scholar 

  3. Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai T (2013) Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5(10):3779–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tangney CC, Rasmussen HE (2013) Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep 15(5):1–10

    Article  CAS  Google Scholar 

  5. Ehala S, Vaher M, Kaljurand M (2005) Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity. J Agric Food Chem 53(16):6484–6490

    Article  CAS  PubMed  Google Scholar 

  6. Vitrac X, Bornet A, Vanderlinde R, Valls J, Richard T, Delaunay JC, Mérillon JM, Teissédre PL (2005) Determination of stilbenes (δ-viniferin, trans-astringin, trans-piceid, cis-and trans-resveratrol, ε-viniferin) in Brazilian wines. J Agric Food Chem 53(14):5664–5669

  7. Chukwumah Y, Walker L, Vogler B, Verghese M (2007) Changes in the phytochemical composition and profile of raw, boiled, and roasted peanuts. J Agric Food Chem 55(22):9266–9273

    Article  CAS  PubMed  Google Scholar 

  8. Shen T, Wang XN, Lou HX (2009) Natural stilbenes: an overview. Nat Prod Rep 26(7):916–935

    Article  CAS  PubMed  Google Scholar 

  9. Ge JF, Peng L, Cheng JQ, Pan CX, Tang J, Chen FH, Li J (2013) Antidepressant-like effect of resveratrol: involvement of antioxidant effect and peripheral regulation on HPA axis. Pharmacol Biochem Behav 114:64–69

  10. Xu Y, Wang Z, You W, Zhang X, Li S, Barish PA, Vernon MM, Du X et al (2010) Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. Eur Neuropsychopharmacol 20(6):405–413

  11. Breuer C, Wolf G, Andrabi SA, Lorenz P, Horn TF (2006) Blood–brain barrier permeability to the neuroprotectant oxyresveratrol. Neurosci Lett 393(2):113–118

    Article  CAS  PubMed  Google Scholar 

  12. Gupta Y, Chaudhary G, Srivastava AK (2002) Protective effect of resveratrol against pentylenetetrazole-induced seizures and its modulation by an adenosinergic system. Pharmacology 65(3):170–174

    Article  CAS  PubMed  Google Scholar 

  13. Pandey AK, Bhattacharya P, Shukla SC, Paul S, Patnaik R (2015) Resveratrol inhibits matrix metalloproteinases to attenuate neuronal damage in cerebral ischemia: a molecular docking study exploring possible neuroprotection. Neur Regen Res 10(4):568–575

    Article  Google Scholar 

  14. Yu P, Wang L, Tang F, Zeng L, Zhou L, Song X, Jia W, Chen J et al (2016) Resveratrol pretreatment decreases ischemic injury and improves neurological function via sonic hedgehog signaling after stroke in rats. Mol Neurobiol. doi:10.1007/s12035-015-9639-7

  15. Liu J, Yi L, Xiang Z, Zhong J, Zhang H, Sun T (2015) Resveratrol attenuates spinal cord injury-induced inflammatory damage in rat lungs. Int J Clin Exp Pathol 8(2):1237–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shao AW, Wu HJ, Chen S, Ab A, Zhang JM, Hong Y (2014) Resveratrol attenuates early brain injury after subarachnoid hemorrhage through inhibition of NF‐κB‐dependent inflammatory/MMP‐9 pathway. CNS Neurosci Ther 20(2):182–185

    Article  CAS  PubMed  Google Scholar 

  17. Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA, Brewer JB, Rissman RA et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85(16):1383–1391

  18. Li W, Tan C, Liu Y, Liu X, Wang X, Gui Y, Qin L, Deng F et al (2015) Resveratrol ameliorates oxidative stress and inhibits aquaporin 4 expression following rat cerebral ischemia-reperfusion injury. Mol Med Rep 12(5):7756–7762

  19. Steiner N, Balez R, Karunaweera N, Lind JM, Münch G, Ooi L (2015) Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264. 7 macrophages and C8–B4 microglia. Neurochem Int. doi:10.1016/j.neuint.2015.10.013

  20. Song H, Han Y, Pan C, Deng X, Dai W, Hu L, Jiang C, Yang Y et al (2015) Activation of adenosine monophosphate–activated protein kinase suppresses neuroinflammation and ameliorates bone cancer paininvolvement of inhibition on mitogen-activated protein kinase. Anesthesiology 123(5):1170–1185

  21. Kumar A, Singh CK, LaVoie HA, DiPette DJ, Singh US (2011) Resveratrol restores Nrf2 level and prevents ethanol-induced toxic effects in the cerebellum of a rodent model of fetal alcohol spectrum disorders. Mol Pharmacol 80(3):446–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song YM, Ha YM, Kim JA, Chung KW, Uehara Y, Lee KJ, Chun P, Byun Y et al (2012) Synthesis of novel azo-resveratrol, azo-oxyresveratrol and their derivatives as potent tyrosinase inhibitors. Bioorg Med Chem Lett 22(24):7451–7455

  23. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177(3):143–155

    Article  CAS  Google Scholar 

  24. Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z (2003) Glycosylation of resveratrol protects it from enzymic oxidation. Biochem J 374:157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gachon CM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10(11):542–549

    Article  CAS  PubMed  Google Scholar 

  26. Schmidlin L, Poutaraud A, Claudel P, Mestre P, Prado E, Santos-Rosa M, Wiedemann-Merdinoglu S, Karst F et al (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol 148(3):1630–1639

  27. Zhang L, Cui L, Zhou G, Jing H, Guo Y, Sun W (2013) Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J Nutr Biochem 24(5):903–911

    Article  CAS  PubMed  Google Scholar 

  28. Ball JM, Medina-Bolivar F, Defrates K, Hambleton E, Hurlburt ME, Fang L, Yang T, Nopo-Olazabal L et al (2015) Investigation of stilbenoids as potential therapeutic agents for rotavirus gastroenteritis. Adv Virol 2015:293524

  29. Keylor MH, Matsuura BS, Stephenson CR (2015) Chemistry and biology of resveratrol-derived natural products. Chem Rev 115(17):8976–9027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takaoka M (1940) Of the phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J Faculty Sci Hokkaido Imperial Uni 3:1–16

    CAS  Google Scholar 

  31. Shi J, He M, Cao J, Wang H, Ding J, Jiao Y, Li R, He J et al (2014) The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes (Vitis quinquangularis and Vitis vinifera). Plant Physiol Biochem 74:24–32

  32. Fernández-Mar M, Mateos R, García-Parrilla M, Puertas B, Cantos-Villar E (2012) Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: a review. Food Chem 130(4):797–813

    Article  Google Scholar 

  33. Pastor RF, Gargantini MR, Murgo M, Prieto S, Manzano H, Aruani C, Quini CI, Covas MI et al (2015) Enrichment of resveratrol in wine through a new vinification procedure. J Life Sci 9:327–333

  34. Sun P, Liang JL, Kang LZ, Huang XY, Huang JJ, Ye ZW, Guo LQ, Lin JF (2015) Increased resveratrol production in wines using engineered wine strains Saccharomyces cerevisiae EC1118 and relaxed antibiotic or auxotrophic selection. Biotechnol Prog 31(3):650–655

  35. Singh CK, George J, Ahmad N (2013) Resveratrol‐based combinatorial strategies for cancer management. Ann NY Acad Sci 1290(1):113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guamán-Balcázar M, Setyaningsih W, Palma M, Barroso C (2016) Ultrasound-assisted extraction of resveratrol from functional foods: cookies and jams. Appl Acoustics 103:207–213

    Article  Google Scholar 

  37. Lyons MM, Yu C, Toma R, Cho SY, Reiboldt W, Lee J, van Breemen RB (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 51(20):5867–5870

  38. Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 52(15):4713–4719

    Article  CAS  PubMed  Google Scholar 

  39. Huang X, Mazza G (2011) Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J Chromatogr A 1218(25):3890–3899

    Article  CAS  PubMed  Google Scholar 

  40. Counet C, Callemien D, Collin S (2006) Chocolate and cocoa: new sources of trans-resveratrol and trans-piceid. Food Chem 98(4):649–657

    Article  CAS  Google Scholar 

  41. Chiva-Blanch G, Urpi-Sarda M, Rotchés-Ribalta M, Zamora-Ros R, Llorach R, Lamuela-Raventós RM, Estruch R, Andrés-Lacueva C (2011) Determination of resveratrol and piceid in beer matrices by solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 218(5):698–705

  42. Ares AM, González Y, Nozal MJ, Bernal JL, Higes M, Bernal J (2015) Development and validation of a liquid chromatography with mass spectrometry method to determine resveratrol and piceid isomers in beeswax. J Sep Sci 38(2):197–204

    Article  CAS  PubMed  Google Scholar 

  43. Sales JM, Resurreccion AV (2014) Resveratrol in peanuts. Crit Rev Food Sci Nutr 54(6):734–770

    Article  CAS  PubMed  Google Scholar 

  44. Lu Q, Zhao Q, Yu QW, Feng Y (2015) Use of pollen solid-phase extraction for the determination of trans-resveratrol in peanut oils. J Agric Food Chem 63(19):4771–4776

    Article  CAS  PubMed  Google Scholar 

  45. Tokusoglu Ö, Ünal MK, Yemis F (2005) Determination of the phytoalexin resveratrol (3, 5, 4′-trihydroxystilbene) in peanuts and pistachios by high-performance liquid chromatographic diode array (HPLC-DAD) and gas chromatography-mass spectrometry (GC-MS). J J Agric Food Chem 53(12):5003–5009

    Article  CAS  PubMed  Google Scholar 

  46. Jitrangsri K, Chaidedgumjorn A, Satiraphan M (2015) Optimization of trans-resveratrol extraction from peanut kernels using supercritical fluid extraction. Asian J Pharm Sci. doi:10.1016/j.ajps.2015.11.002

  47. Zhao X, Ma F, Li P, Li G, Zhang L, Zhang Q, Zhang W, Wang X (2015) Simultaneous determination of isoflavones and resveratrols for adulteration detection of soybean and peanut oils by mixed-mode SPE LC–MS/MS. Food Chem 176:465–471

  48. Akhtar S, Khalid N, Ahmed I, Shahzad A, Suleria HAR (2014) Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: a review. Crit Rev Food Sci Nutr 54(12):1562–1575

    Article  CAS  PubMed  Google Scholar 

  49. Walle T (2011) Bioavailability of resveratrol. Ann N Y Acad Sci 1215(1):9–15

    Article  CAS  PubMed  Google Scholar 

  50. Cottart CH, Nivet‐Antoine V, Laguillier‐Morizot C, Beaudeux JL (2010) Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54(1):7–16

    Article  CAS  PubMed  Google Scholar 

  51. Amri A, Chaumeil J, Sfar S, Charrueau C (2012) Administration of resveratrol: what formulation solutions to bioavailability limitations? J Control Release 158(2):182–193

    Article  CAS  PubMed  Google Scholar 

  52. Johnson JJ, Nihal M, Siddiqui IA, Scarlett CO, Bailey HH, Mukhtar H, Ahmad N (2011) Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res 55(8):1169–1176

  53. Wightman EL, Reay JL, Haskell CF, Williamson G, Dew TP, Kennedy DO (2014) Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: a randomised, double-blind, placebo-controlled, cross-over investigation. Br J Nutr 112(02):203–213

    Article  CAS  PubMed  Google Scholar 

  54. Augustin MA, Sanguansri L, Lockett T (2013) Nano‐and micro‐encapsulated systems for enhancing the delivery of resveratrol. Ann N Y Acad Sci 1290(1):107–112

    Article  CAS  PubMed  Google Scholar 

  55. Soo E, Thakur S, Qu Z, Jambhrunkar S, Parekh HS, Popat A (2016) Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J Colloid Interface Sci 462:368–374

    Article  CAS  PubMed  Google Scholar 

  56. Park S, Cha SH, Cho I, Park S, Park Y, Cho S, Park Y (2016) Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mat Sci Eng C 58:1160–1169

  57. Ramalingam P, Ko YT (2016) Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B: Biointerfaces 139:52–61

    Article  CAS  PubMed  Google Scholar 

  58. Scalia S, Trotta V, Iannuccelli V, Bianchi A (2015) Enhancement of in vivo human skin penetration of resveratrol by chitosan-coated lipid microparticles. Colloids Surf B: Biointerfaces 135:42–49

  59. Joye IJ, Davidov-Pardo G, Ludescher RD, McClements DJ (2015) Fluorescence quenching study of resveratrol binding to zein and gliadin: towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chem 185:261–267

    Article  CAS  PubMed  Google Scholar 

  60. Istenič K, Balanč BD, Djordjević VB, Bele M, Nedović VA, Bugarski BM, Ulrih NP (2015) Encapsulation of resveratrol into Ca-alginate submicron particles. J Food Eng 167:196–203

  61. He S, Yan X (2013) From resveratrol to its derivatives: new sources of natural antioxidant. Curr Med Chem 20(8):1005–1017

    CAS  PubMed  Google Scholar 

  62. Liu Q, Kim C, Jo YH, Kim SB, Hwang BY, Lee MK (2015) Synthesis and biological evaluation of resveratrol derivatives as melanogenesis inhibitors. Molecules 20(9):16933–16945

    Article  CAS  PubMed  Google Scholar 

  63. Kang SY, Lee JK, Choi O, Kim CY, Jang JH, Hwang BY, Hong YS (2014) Biosynthesis of methylated resveratrol analogs through the construction of an artificial biosynthetic pathway in E. coli. BMC Biotechnol 14(1):67

  64. Ogas T, Kondratyuk TP, Pezzuto JM (2013) Resveratrol analogs: promising chemopreventive agents. Ann N Y Acad Sci 1290(1):21–29

    Article  CAS  PubMed  Google Scholar 

  65. Bellina F, Guazzelli N, Lessi M, Manzini C (2015) Imidazole analogues of resveratrol: synthesis and cancer cell growth evaluation. Tetrahedron 71(15):2298–2305

    Article  CAS  Google Scholar 

  66. Theodorou A, Phylactides M, Forti L, Cramarossa MR, Spyrou P, Gambari R, Theinb SL, Kleanthous M (2015) The investigation of resveratrol and analogues as potential inducers of fetal hemoglobin. Blood Cells Mol Dis. doi:10.1016/j.bcmd.2015.11.007

  67. Xu Z, Wu J, Zheng J, Ma H, Zhang H, Zhen X, Zheng LT, Zhang X (2015) Design, synthesis and evaluation of a series of non-steroidal anti-inflammatory drug conjugates as novel neuroinflammatory inhibitors. Int Immunopharmacol 25(2):528–537

  68. Antus C, Radnai B, Dombovari P, Fonai F, Avar P, Matyus P, Racz B, Sumegi B et al (2015) Anti-inflammatory effects of a triple-bond resveratrol analog: structure and function relationship. Eur J Pharmacol 748:61–67

  69. Chen W, Ge X, Xu F, Zhang Y, Liu Z, Pan J, Song J, Dai Y et al (2015) Design, synthesis and biological evaluation of paralleled Aza resveratrol-chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg Med Chem Lett 25(15):2998–3004

  70. Venigalla M, Gyengesi E, Sharman MJ, Munch G (2015) Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochem Int. doi:10.1016/j.neuint.2015.10.011

  71. Fu Z, Aucoin D, Ahmed M, Ziliox M, Van Nostrand WE, Smith SO (2014) Capping of abeta42 oligomers by small molecule inhibitors. Biochemistry 53(50):7893–7903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ghobeh M, Ahmadian S, Meratan AA, Ebrahim-Habibi A, Ghasemi A, Shafizadeh M, Nemat-Gorgani M (2014) Interaction of Abeta(25-35) fibrillation products with mitochondria: effect of small-molecule natural products. Biopolymers 102(6):473–486

  73. Ribeiro CA, Saraiva MJ, Cardoso I (2012) Stability of the transthyretin molecule as a key factor in the interaction with a-beta peptide--relevance in Alzheimer’s disease. PLoS One 7(9):e45368. doi:10.1371/journal.pone.0045368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54(2):111–118

    Article  CAS  PubMed  Google Scholar 

  75. Sheynis T, Friediger A, Xue WF, Hellewell AL, Tipping KW, Hewitt EW, Radford SE, Jelinek R (2013) Aggregation modulators interfere with membrane interactions of beta2-microglobulin fibrils. Biophys J 105(3):745–755

  76. Ge JF, Qiao JP, Qi CC, Wang CW, Zhou JN (2012) The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int 61(7):1192–1201

    Article  CAS  PubMed  Google Scholar 

  77. Ladiwala AR, Lin JC, Bale SS, Marcelino-Cruz AM, Bhattacharya M, Dordick JS, Tessier PM (2010) Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Abeta into off-pathway conformers. J Biol Chem 285(31):24228–24237

  78. He XP, Deng Q, Cai L, Wang CZ, Zang Y, Li J, Chen GR, Tian H (2014) Fluorogenic resveratrol-confined graphene oxide for economic and rapid detection of Alzheimer’s disease. ACS Appl Mater Interfaces 6(8):5379–5382

  79. Guo JP, Yu S, McGeer PL (2010) Simple in vitro assays to identify amyloid-beta aggregation blockers for Alzheimer’s disease therapy. J Alzheimers Dis 19(4):1359–1370

  80. Patil SP, Tran N, Geekiyanage H, Liu L, Chan C (2013) Curcumin-induced upregulation of the anti-tau cochaperone BAG2 in primary rat cortical neurons. Neurosci Lett 554:121–125

    Article  CAS  PubMed  Google Scholar 

  81. Menard C, Bastianetto S, Quirion R (2013) Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Front Cell Neurosci 7:281

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhao YN, Li WF, Li F, Zhang Z, Dai YD, Xu AL, Qi C, Gao JM et al (2013) Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem Biophys Res Commun 435(4):597–602

  83. Mei Y, Jiang C, Wan Y, Lv J, Jia J, Wang X, Yang X, Tong Z (2015) Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell 14(4):659–668

  84. Moorthi P, Premkumar P, Priyanka R, Jayachandran KS, Anusuyadevi M (2015) Pathological changes in hippocampal neuronal circuits underlie age-associated neurodegeneration and memory loss: positive clue toward SAD. Neuroscience 301:90–105

    Article  CAS  PubMed  Google Scholar 

  85. Sharma M, Briyal S, Gupta YK (2005) Effect of alpha lipoic acid, melatonin and trans resveratrol on intracerebroventricular streptozotocin induced spatial memory deficit in rats. Indian J Physiol Pharmacol 49(4):395–402

    CAS  PubMed  Google Scholar 

  86. Sharma M, Gupta YK (2002) Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 71(21):2489–2498

    Article  CAS  PubMed  Google Scholar 

  87. Wight RD, Tull CA, Deel MW, Stroope BL, Eubanks AG, Chavis JA, Drew PD, Hensley LL (2012) Resveratrol effects on astrocyte function: relevance to neurodegenerative diseases. Biochem Biophys Res Commun 426(1):112–115

  88. Yao Y, Li J, Niu Y, Yu JQ, Yan L, Miao ZH, Zhao XX, Li YJ et al (2015) Resveratrol inhibits oligomeric Abetainduced microglial activation via NADPH oxidase. Mol Med Rep 12(4):6133–6139

  89. Kim YA, Lim SY, Rhee SH, Park KY, Kim CH, Choi BT, Lee SJ, Park YM et al (2006) Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in beta-amyloid-treated C6 glioma cells. Int J Mol Med 17(6):1069–1075

  90. Zaky A, Mohammad B, Moftah M, Kandeel KM, Bassiouny AR (2013) Apurinic/apyrimidinic endonuclease 1 is a key modulator of aluminum-induced neuroinflammation. BMC Neurosci 14:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cheng X, Wang Q, Li N, Zhao H (2015) Effects of resveratrol on hippocampal astrocytes and expression of TNF-alpha in Alzheimer’s disease model rate. Wei Sheng Yan Jiu 44(4):610–614

    CAS  PubMed  Google Scholar 

  92. Solberg NO, Chamberlin R, Vigil JR, Deck LM, Heidrich JE, Brown DC, Brady CI, Vander Jagt TA et al (2014) Optical and SPION-enhanced MR imaging shows that trans-stilbene inhibitors of NF-kappaB concomitantly lower Alzheimer’s disease plaque formation and microglial activation in AbetaPP/PS-1 transgenic mouse brain. J Alzheimers Dis 40(1):191–212

  93. Zhao HF, Li N, Wang Q, Cheng XJ, Li XM, Liu TT (2015) Resveratrol decreases the insoluble Abeta1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience 310:641–649

    Article  CAS  PubMed  Google Scholar 

  94. Lukiw WJ (2012) NF-kappaB-regulated, proinflammatory miRNAs in Alzheimer’s disease. Alzheimers Res Ther 4(6):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee EO, Park HJ, Kang JL, Kim HS, Chong YH (2010) Resveratrol reduces glutamate-mediated monocyte chemotactic protein-1 expression via inhibition of extracellular signal-regulated kinase 1/2 pathway in rat hippocampal slice cultures. J Neurochem 112(6):1477–1487

    Article  CAS  PubMed  Google Scholar 

  96. Huang TC, Lu KT, Wo YY, Wu YJ, Yang YL (2011) Resveratrol protects rats from Abeta-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 6(12):e29102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Scuderi C, Stecca C, Bronzuoli MR, Rotili D, Valente S, Mai A, Steardo L (2014) Sirtuin modulators control reactive gliosis in an in vitro model of Alzheimer’s disease. Front Pharmacol 5:89

  98. Feng X, Liang N, Zhu D, Gao Q, Peng L, Dong H, Yue Q, Liu H et al (2013) Resveratrol inhibits beta-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One 8(3):e59888

  99. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26(13):3169–3179

  100. Porquet D, Casadesus G, Bayod S, Vicente A, Canudas AM, Vilaplana J, Pelegrí C, Sanfeliu C et al (2013) Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age 35(5):1851–1865

  101. Porquet D, Grinan-Ferre C, Ferrer I, Camins A, Sanfeliu C, Del Valle J, Pallàs M (2014) Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 42(4):1209–1220

  102. Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ (2009) Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 33(2):206–219

  103. Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G et al (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem 110(5):1445–1456

    Article  CAS  PubMed  Google Scholar 

  104. Calliari A, Bobba N, Escande C, Chini EN (2014) Resveratrol delays Wallerian degeneration in a NAD(+) and DBC1 dependent manner. Exp Neurol 251:91–100

    Article  CAS  PubMed  Google Scholar 

  105. Sinclair DA, Guarente L (2014) Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol 54:363–380

    Article  CAS  PubMed  Google Scholar 

  106. Granzotto A, Zatta P (2011) Resveratrol acts not through anti-aggregative pathways but mainly via its scavenging properties against Abeta and Abeta-metal complexes toxicity. PLoS One 6(6):e21565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Draczynska-Lusiak B, Chen YM, Sun AY (1998) Oxidized lipoproteins activate NF-kappaB binding activity and apoptosis in PC12 cells. Neuroreport 9(3):527–532

    Article  CAS  PubMed  Google Scholar 

  108. Sun AY, Draczynska-Lusiak B, Sun GY (2001) Oxidized lipoproteins, beta amyloid peptides and Alzheimer’s disease. Neurotox Res 3(2):167–178

    Article  CAS  PubMed  Google Scholar 

  109. Kwon KJ, Kim HJ, Shin CY, Han SH (2010) Melatonin potentiates the neuroprotective properties of resveratrol against beta-amyloid-induced neurodegeneration by modulating AMP-activated protein kinase pathways. J Clin Neurol 6(3):127–137

    Article  PubMed  PubMed Central  Google Scholar 

  110. Savaskan E, Olivieri G, Meier F, Seifritz E, Wirz-Justice A, Muller-Spahn F (2003) Red wine ingredient resveratrol protects from beta-amyloid neurotoxicity. Gerontology 49(6):380–383

    Article  CAS  PubMed  Google Scholar 

  111. Koukoulitsa C, Villalonga-Barber C, Csonka R, Alexi X, Leonis G, Dellis D, Hamelink E, Belda O, Steele BR, Micha-Screttas M, Alexis MN, Papadopoulos MG, Mavromoustakos T (2015) Biological and computational evaluation of resveratrol inhibitors against Alzheimer’s disease. J Enzyme Inhib Med Chem. doi:10.3109/14756366.2014.1003928

  112. Jang JH, Surh YJ (2003) Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 34(8):1100–1110

    Article  CAS  PubMed  Google Scholar 

  113. Rege SD, Geetha T, Broderick TL, Babu JR (2015) Resveratrol protects beta amyloid-induced oxidative damage and memory associated proteins in H19-7 hippocampal neuronal cells. Curr Alzheimer Res 12(2):147–156

    Article  CAS  PubMed  Google Scholar 

  114. Li SY, Wang XB, Kong LY (2014) Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur J Med Chem 71:36–45

    Article  CAS  PubMed  Google Scholar 

  115. Tao HY, Wu CF, Zhou Y, Gong WH, Zhang X, Iribarren P, Zhao YQ, Le YY et al (2004) The grape component resveratrol interferes with the function of chemoattractant receptors on phagocytic leukocytes. Cell Mol Immunol 1(1):50–56

  116. Bastianetto S, Zheng WH, Quirion R (2000) Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 131(4):711–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jang YJ, Kim JE, Kang NJ, Lee KW, Lee HJ (2009) Piceatannol attenuates 4-hydroxynonenal-induced apoptosis of PC12 cells by blocking activation of c-Jun N-terminal kinase. Ann N Y Acad Sci 1171:176–182

    Article  CAS  PubMed  Google Scholar 

  118. Kwon KJ, Kim JN, Kim MK, Lee J, Ignarro LJ, Kim HJ, Shin CY, Han SH (2011) Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J Pineal Res 50(2):110–123

  119. de Almeida LM, Leite MC, Thomazi AP, Battu C, Nardin P, Tortorelli LS, Zanotto C, Posser T et al (2008) Resveratrol protects against oxidative injury induced by H2O2 in acute hippocampal slice preparations from Wistar rats. Arch Biochem Biophys 480(1):27–32

  120. Rushworth JV, Griffiths HH, Watt NT, Hooper NM (2013) Prion protein-mediated toxicity of amyloid-beta oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 288(13):8935–8951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feng Y, Wang XP, Yang SG, Wang YJ, Zhang X, Du XT, Sun XX, Zhao M et al (2009) Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology 30(6):986–995

  122. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280(45):37377–37382

    Article  CAS  PubMed  Google Scholar 

  123. Csuk R, Albert S, Kluge R, Strohl D (2013) Resveratrol derived butyrylcholinesterase inhibitors. Arch Pharm 346(7):499–503

    Article  CAS  Google Scholar 

  124. Granzotto A, Zatta P (2014) Resveratrol and Alzheimer’s disease: message in a bottle on red wine and cognition. Front Aging Neurosci 6:95

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ohta K, Mizuno A, Ueda M, Li S, Suzuki Y, Hida Y, Hayakawa-Yano Y, Itoh M et al (2010) Autophagy impairment stimulates PS1 expression and gamma-secretase activity. Autophagy 6(3):345–352

  126. Jeong JK, Moon MH, Bae BC, Lee YJ, Seol JW, Kang HS, Kim JS, Kang SJ et al (2012) Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 73(2):99–105

  127. Wang ZG, Yang C, Zhu B, Hua F (2015) AMPK-dependent autophagic activation is probably involved in the mechanism of resveratrol exerting therapeutic effects for Alzheimer’s disease. Rejuvenation Res 18(1):101–102

    Article  PubMed  Google Scholar 

  128. Wilson CM, Magnaudeix A, Yardin C, Terro F (2014) Autophagy dysfunction and its link to Alzheimer’s disease and type II diabetes mellitus. CNS Neurol Disord Drug Targets 13(2):226–246

    Article  CAS  PubMed  Google Scholar 

  129. Bastianetto S, Krantic S, Chabot JG, Quirion R (2011) Possible involvement of programmed cell death pathways in the neuroprotective action of polyphenols. Curr Alzheimer Res 8(5):445–451

    Article  CAS  PubMed  Google Scholar 

  130. Li H, Wang J, Wang P, Rao Y, Chen L (2015) Resveratrol Reverses the Synaptic Plasticity Deficits in a Chronic Cerebral Hypoperfusion Rat Model. J Stroke Cerebrovasc Dis 25(1):122–128

    Article  PubMed  Google Scholar 

  131. Jang MH, Piao XL, Kim HY, Cho EJ, Baek SH, Kwon SW, Park JH (2007) Resveratrol oligomers from Vitis amurensis attenuate beta-amyloid-induced oxidative stress in PC12 cells. Biol Pharm Bull 30(6):1130–1134

  132. Kang MK, Kang NJ, Jang YJ, Lee KW, Lee HJ (2009) Gallic acid induces neuronal cell death through activation of c-Jun N-terminal kinase and downregulation of Bcl-2. Ann N Y Acad Sci 1171:514–520

    Article  CAS  PubMed  Google Scholar 

  133. Chen S, Fan Q, Li A, Liao D, Ge J, Laties AM, Zhang X (2013) Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis 18(7):786–799

  134. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, Szeto HH, Park B, et al (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20(Suppl 2):S609–S631

  135. Zhang JQ, Wu PF, Long LH, Chen Y, Hu ZL, Ni L, Wang F, Chen JG (2013) Resveratrol promotes cellular glucose utilization in primary cultured cortical neurons via calcium-dependent signaling pathway. J Nutr Biochem 24(4):629–637

  136. Nguyen NT, Ooi L, Piller SC, Munch G (2013) Proenergetic effects of resveratrol in the murine neuronal cell line Neuro2a. Mol Nutr Food Res 57(11):1901–1907

    Article  CAS  PubMed  Google Scholar 

  137. Sezgin Z, Dincer Y (2014) Alzheimer’s disease and epigenetic diet. Neurochem Int 78:105–116

    Article  CAS  PubMed  Google Scholar 

  138. Martin SL, Hardy TM, Tollefsbol TO (2013) Medicinal chemistry of the epigenetic diet and caloric restriction. Curr Med Chem 20(32):4050–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Luo L, Huang YM (2006) Effect of resveratrol on the cognitive ability of Alzheimeros mice. Zhong Nan Da Xue Xue Bao Yi Xue Ban 31(4):566–569

    CAS  PubMed  Google Scholar 

  140. Malhotra A, Bath S, Elbarbry F (2015) An Organ System Approach to Explore the Antioxidative, Anti-Inflammatory, and Cytoprotective Actions of Resveratrol. Oxid Med Cell Longev 2015:803971

    Article  PubMed  PubMed Central  Google Scholar 

  141. Riviere C, Richard T, Quentin L, Krisa S, Merillon JM, Monti JP (2007) Inhibitory activity of stilbenes on Alzheimer’s beta-amyloid fibrils in vitro. Bioorg Med Chem 15(2):1160–1167

  142. Calabrese EJ, Mattson MP, Calabrese V (2010) Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum Exp Toxicol 29(12):980–1015

    Article  CAS  PubMed  Google Scholar 

  143. Conte A, Pellegrini S, Tagliazucchi D (2003) Effect of resveratrol and catechin on PC12 tyrosine kinase activities and their synergistic protection from beta-amyloid toxicity. Drugs Exp Clin Res 29(5-6):243–255

    CAS  PubMed  Google Scholar 

  144. Frozza RL, Bernardi A, Paese K, Hoppe JB, da Silva T, Battastini AM, Pohlmann AR, Guterres SS et al (2010) Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol 6(6):694–703

  145. Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matte A, Battastini AM, Pohlmann AR, Guterres SS et al (2013) Neuroprotective effects of resveratrol against Abeta administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol 47(3):1066–1080

  146. Wang J, Bi W, Cheng A, Freire D, Vempati P, Zhao W, Gong B, Janle EM et al (2014) Targeting multiple pathogenic mechanisms with polyphenols for the treatment of Alzheimer’s disease-experimental approach and therapeutic implications. Front Aging Neurosci 6:42

  147. Richard T, Poupard P, Nassra M, Papastamoulis Y, Iglesias ML, Krisa S, Waffo-Teguo P, Mérillon JM et al (2011) Protective effect of epsilon-viniferin on beta-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry. Bioorg Med Chem 19(10):3152–3155

  148. Ma T, Tan MS, Yu JT, Tan L (2014) Resveratrol as a therapeutic agent for Alzheimer’s disease. Biomed Res Int 2014:350516

    PubMed  PubMed Central  Google Scholar 

  149. Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L (2015) Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta 1852(6):1202–1208

    Article  CAS  PubMed  Google Scholar 

  150. Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR (2014) Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci 6:218

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chang J, Rimando A, Pallas M, Camins A, Porquet D, Reeves J, Shukitt-Hale B, Smith MA et al (2012) Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 33(9):2062–2071

  152. Lu C, Guo Y, Li J, Yao M, Liao Q, Xie Z, Li X (2012) Design, synthesis, and evaluation of resveratrol derivatives as Ass((1)-(4)(2)) aggregation inhibitors, antioxidants, and neuroprotective agents. Bioorg Med Chem Lett 22(24):7683–7687

  153. Buenafe OE, Orellana-Paucar A, Maes J, Huang H, Ying X, De Borggraeve W, Crawford AD, Luyten W (2013) Tanshinone IIA exhibits anticonvulsant activity in zebrafish and mouse seizure models. ACS Chem Neurosci 4(11):1479–1487

  154. Pogue AI, Percy ME, Cui JG, Li YY, Bhattacharjee S, Hill JM, Kruck TP, Zhao Y (2011) Up-regulation of NF-kB-sensitive miRNA-125b and miRNA-146a in metal sulfate-stressed human astroglial (HAG) primary cell cultures. J Inorg Biochem 105(11):1434–1437

  155. Mao F, Yan J, Li J, Jia X, Miao H, Sun Y, Huang L, Li X (2014) New multi-target-directed small molecules against Alzheimer’s disease: a combination of resveratrol and clioquinol. Org Biomol Chem 12(31):5936–5944

Download references

Acknowledgments

Declared none.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Touqeer Ahmed or Seyed Mohammad Nabavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, T., Javed, S., Javed, S. et al. Resveratrol and Alzheimer’s Disease: Mechanistic Insights. Mol Neurobiol 54, 2622–2635 (2017). https://doi.org/10.1007/s12035-016-9839-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9839-9

Keywords

Navigation