Skip to main content

Advertisement

Log in

Conditioned Medium Derived from Neural Progenitor Cells Induces Long-term Post-ischemic Neuroprotection, Sustained Neurological Recovery, Neurogenesis, and Angiogenesis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Adult neural progenitor cells (NPCs) induce post-ischemic long-term neuroprotection and brain remodeling by releasing of survival- and plasticity-promoting mediators. To evaluate whether secreted factors may mimic neuroprotective and restorative effects of NPCs, we exposed male C57BL6 mice to focal cerebral ischemia and intravenously applied conditioned medium (CM) derived from subventricular zone NPCs. CM dose-dependently reduced infarct volume and brain leukocyte infiltration after 48 h when delivered up to 12 h after focal cerebral ischemia. Neuroprotection persisted in the post-acute stroke phase yielding enhanced neurological recovery that lasted throughout the 28-day observation period. Increased Bcl-2, phosphorylated Akt and phosphorylated STAT-3 abundance, and reduced caspase-3 activity and Bax abundance were noted in ischemic brains of CM-treated mice at 48 h post-stroke, indicative of enhanced cell survival signaling. Long-term neuroprotection was associated with increased brain glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF) concentrations at 28 days resulting in increased neurogenesis and angiogenesis. The observation that NPC-derived CM induces sustained neuroprotection and neurological recovery suggests that cell transplantation may be dispensable when secreted factors are instead administered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Butti E, Cusimano M, Bacigaluppi M, Martino G (2014) Neurogenic and non-neurogenic functions of endogenous neural stem cells. Front Neurosci 8:92. doi:10.3389/fnins.2014.00092

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vishwakarma SK, Bardia A, Tiwari SK, Paspala SA, Khan AA (2014) Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: a review. J Adv Res 5(3):277–294. doi:10.1016/j.jare.2013.04.005

    Article  PubMed  Google Scholar 

  3. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970

    Article  CAS  PubMed  Google Scholar 

  4. Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S (2014) Neural precursor cells in the ischemic brain—integration, cellular crosstalk, and consequences for stroke recovery. Front Cell Neurosci 8:291. doi:10.3389/fncel.2014.00291

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kalladka D, Muir KW (2014) Brain repair: cell therapy in stroke. Stem Cells Cloning: Adv Appl 7:31–44. doi:10.2147/SCCAA.S38003

    CAS  Google Scholar 

  6. Jin K, Wang X, Xie L, Mao XO, Greenberg DA (2010) Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci U S A 107(17):7993–7998. doi:10.1073/pnas.1000154107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li B, Piao CS, Liu XY, Guo WP, Xue YQ, Duan WM, Gonzalez-Toledo ME, Zhao LR (2010) Brain self-protection: the role of endogenous neural progenitor cells in adult brain after cerebral cortical ischemia. Brain Res 1327:91–102. doi:10.1016/j.brainres.2010.02.030

    Article  CAS  PubMed  Google Scholar 

  8. Bacigaluppi M, Pluchino S, Peruzzotti Jametti L, Kilic E, Kilic U, Salani G, Brambilla E, West MJ et al (2009) Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain 132(Pt 8):2239–2251. doi:10.1093/brain/awp174

    Article  PubMed  Google Scholar 

  9. Darsalia V, Allison SJ, Cusulin C, Monni E, Kuzdas D, Kallur T, Lindvall O, Kokaia Z (2011) Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab 31(1):235–242. doi:10.1038/jcbfm.2010.81

    Article  PubMed  Google Scholar 

  10. Doeppner TR, Ewert TA, Tonges L, Herz J, Zechariah A, Elali A, Ludwig AK, Giebel B et al (2012) Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells 30(6):1297–1310. doi:10.1002/stem.1098

    Article  CAS  PubMed  Google Scholar 

  11. Doeppner TR, Kaltwasser B, Teli MK, Bretschneider E, Bahr M, Hermann DM (2014) Effects of acute versus post-acute systemic delivery of neural progenitor cells on neurological recovery and brain remodeling after focal cerebral ischemia in mice. Cell Death Dis 5, e1386. doi:10.1038/cddis.2014.359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Minnerup J, Kim JB, Schmidt A, Diederich K, Bauer H, Schilling M, Strecker JK, Ringelstein EB et al (2011) Effects of neural progenitor cells on sensorimotor recovery and endogenous repair mechanisms after photothrombotic stroke. Stroke; J Cereb Circ 42(6):1757–1763. doi:10.1161/STROKEAHA.110.599282

    Article  Google Scholar 

  13. Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O (2014) Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 34(10):1573–1584. doi:10.1038/jcbfm.2014.130

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang R, Zhang Z, Zhang C, Zhang L, Robin A, Wang Y, Lu M, Chopp M (2004) Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat. J Neurosci 24(25):5810–5815

    Article  CAS  PubMed  Google Scholar 

  15. Hermann DM, Chopp M (2012) Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol 11(4):369–380. doi:10.1016/S1474-4422(12)70039-X

    Article  PubMed  PubMed Central  Google Scholar 

  16. Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158. doi:10.1016/S0065-230X(08)00005-5

    Article  PubMed  Google Scholar 

  17. Blum B, Benvenisty N (2009) The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle 8(23):3822–3830

    Article  CAS  PubMed  Google Scholar 

  18. Cho YJ, Song HS, Bhang S, Lee S, Kang BG, Lee JC, An J, Cha CI et al (2012) Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J Neurosci Res 90(9):1794–1802. doi:10.1002/jnr.23063

    Article  CAS  PubMed  Google Scholar 

  19. Egashira Y, Sugitani S, Suzuki Y, Mishiro K, Tsuruma K, Shimazawa M, Yoshimura S, Iwama T et al (2012) The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res 1461:87–95. doi:10.1016/j.brainres.2012.04.033

    Article  CAS  PubMed  Google Scholar 

  20. Scheibe F, Klein O, Klose J, Priller J (2012) Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell Mol Neurobiol 32(4):567–576. doi:10.1007/s10571-012-9798-2

    Article  CAS  PubMed  Google Scholar 

  21. Tate CC, Fonck C, McGrogan M, Case CC (2010) Human mesenchymal stromal cells and their derivative, SB623 cells, rescue neural cells via trophic support following in vitro ischemia. Cell Transplant 19(8):973–984. doi:10.3727/096368910X494885

    Article  PubMed  Google Scholar 

  22. Tsai MJ, Tsai SK, Hu BR, Liou DY, Huang SL, Huang MC, Huang WC, Cheng H et al (2014) Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci 21:5. doi:10.1186/1423-0127-21-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wei X, Du Z, Zhao L, Feng D, Wei G, He Y, Tan J, Lee WH et al (2009) IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells (Dayton, Ohio) 27(2):478–488. doi:10.1634/stemcells.2008-0333

    Article  CAS  Google Scholar 

  24. Kim SY, Cho HS, Yang SH, Shin JY, Kim JS, Lee ST, Chu K, Roh JK et al (2009) Soluble mediators from human neural stem cells play a critical role in suppression of T-cell activation and proliferation. J Neurosci Res 87(10):2264–2272. doi:10.1002/jnr.22050

    Article  CAS  PubMed  Google Scholar 

  25. Doeppner TR, Doehring M, Bretschneider E, Zechariah A, Kaltwasser B, Muller B, Koch JC, Bahr M et al (2013) MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol 126(2):251–265. doi:10.1007/s00401-013-1142-5

    Article  CAS  PubMed  Google Scholar 

  26. Doeppner TR, Kaltwasser B, Bahr M, Hermann DM (2014) Effects of neural progenitor cells on post-stroke neurological impairment—a detailed and comprehensive analysis of behavioral tests. Front Cell Neurosci 8:338. doi:10.3389/fncel.2014.00338

    PubMed  PubMed Central  Google Scholar 

  27. Chu HX, Kim HA, Lee S, Moore JP, Chan CT, Vinh A, Gelderblom M, Arumugam TV et al (2014) Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab 34(3):450–459. doi:10.1038/jcbfm.2013.217

    Article  CAS  PubMed  Google Scholar 

  28. Doeppner TR, Bretschneider E, Doehring M, Segura I, Senturk A, Acker-Palmer A, Hasan MR, Elali A et al (2011) Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia. Acta Neuropathol 122(4):429–442. doi:10.1007/s00401-011-0856-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosell A, Morancho A, Navarro-Sobrino M, Martinez-Saez E, Hernandez-Guillamon M, Lope-Piedrafita S, Barcelo V, Borras F et al (2013) Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice. PLoS One 8(9), e73244. doi:10.1371/journal.pone.0073244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dao M, Tate CC, McGrogan M, Case CC (2013) Comparing the angiogenic potency of naive marrow stromal cells and Notch-transfected marrow stromal cells. J Transl Med 11:81. doi:10.1186/1479-5876-11-81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY et al (2013) Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 8(8), e72604. doi:10.1371/journal.pone.0072604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoo SW, Chang DY, Lee HS, Kim GH, Park JS, Ryu BY, Joe EH, Lee YD et al (2013) Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-beta. Neurobiol Dis 58:249–257. doi:10.1016/j.nbd.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  33. Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD, Suh-Kim H (2008) Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med 40(4):387–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng W, Honmou O, Miyata K, Harada K, Suzuki J, Liu H, Houkin K, Hamada H et al (2010) Therapeutic benefits of human mesenchymal stem cells derived from bone marrow after global cerebral ischemia. Brain Res 1310:8–16. doi:10.1016/j.brainres.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  35. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63. doi:10.1016/j.stem.2009.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH et al (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131(Pt 3):616–629. doi:10.1093/brain/awm306

    Article  PubMed  Google Scholar 

  37. Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, Albers GW, Kaste M et al (2010) Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375(9727):1695–1703. doi:10.1016/S0140-6736(10)60491-6

    Article  CAS  PubMed  Google Scholar 

  38. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y et al (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22(6):845–854. doi:10.1089/scd.2012.0395

    Article  CAS  PubMed  Google Scholar 

  39. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611. doi:10.1161/CIRCULATIONAHA.112.114173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hermann DM, Zechariah A (2009) Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab 29(10):1620–1643. doi:10.1038/jcbfm.2009.100

    Article  CAS  PubMed  Google Scholar 

  41. Ma Y, Zechariah A, Qu Y, Hermann DM (2012) Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res 90(10):1873–1882. doi:10.1002/jnr.23088

    Article  CAS  PubMed  Google Scholar 

  42. Pavlichenko N, Sokolova I, Vijde S, Shvedova E, Alexandrov G, Krouglyakov P, Fedotova O, Gilerovich EG et al (2008) Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats. Brain Res 1233:203–213. doi:10.1016/j.brainres.2008.06.123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by TUBITAK (#2221; to TRD) and the German Research Council (HE3173/2-2 and HE3173/3-1; to DMH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten R. Doeppner.

Ethics declarations

Conflict of interest/disclosures

BB got a travel grant and a speaker honorary from CSL Behring (Germany) and material supports of CSL Behring (Germany and Canada). As a member of the scientific advisory board of Edge Therapeutics, Inc., BB received advisor honorary. The other authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doeppner, T.R., Traut, V., Heidenreich, A. et al. Conditioned Medium Derived from Neural Progenitor Cells Induces Long-term Post-ischemic Neuroprotection, Sustained Neurological Recovery, Neurogenesis, and Angiogenesis. Mol Neurobiol 54, 1531–1540 (2017). https://doi.org/10.1007/s12035-016-9748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9748-y

Keywords

Navigation