Skip to main content

Advertisement

Log in

Human Mesenchymal Stem Cells from Adipose Tissue Differentiated into Neuronal or Glial Phenotype Express Different Aquaporins

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs) are 13 integral membrane proteins that provide selective pores for the rapid movement of water and other uncharged solutes, across cell membranes. Recently, AQPs have been focused for their role in production, circulation, and homeostasis of the cerebrospinal fluid and their importance in several human diseases is becoming clear. This study investigated the time course (0, 14, and 28 days) of AQP1, 4, 7, 8, and 9 during the neural differentiation of human mesenchymal stem cells (MSCs) from adipose tissue (AT). For this purpose, two different media, enriched with serum or B-27 and N1 supplements, were applied to give a stimulus toward neural lineage. After 14 days, the cells were cultured with neuronal or glial differentiating medium for further 14 days. The results confirmed that AT-MSCs could be differentiated into neurons, astrocytes, and oligodendrocytes, expressing not only the typical neural markers but also specific AQPs depending on differentiated cell type. Our data demonstrated that at 28 days, AT-MSCs express only AQP1; astrocytes AQP1, 4, and 7; oligodendrocytes AQP1, 4, and 8; and finally neurons AQP1 and 7. This study provides fundamental insight into the biology of the mesenchymal stem cells and it suggests that AQPs can be potential neural markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hill AE, Schachar-Hill B, Schachar-Hill Y (2004) What are aquaporins for? J Membrane Biol 197:1–32. doi:10.1007/s00232-003-0639-6

    Article  CAS  Google Scholar 

  2. Zeuthen T, Macaulay N (2002) Passive water transport in biological pores. Int Rev Cytol 215:203–230

    Article  CAS  PubMed  Google Scholar 

  3. Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A 88:11110–11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ishibashi K (2006) Aquaporin superfamily with unusual npa boxes: S-aquaporins (superfamily, sip-like and subcellular-aquaporins). Cell Mol Biol 52:20–27. doi:10.1016/j.bbamem.2006.02.024

    CAS  PubMed  Google Scholar 

  5. King LS, Konzo D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Cell Biol 5:687–698. doi:10.1038/nrm1469

    Article  CAS  Google Scholar 

  6. Papadopoulos MC, Saadoun S, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456:693–700. doi:10.1007/s00424-007-0357-5

    Article  CAS  PubMed  Google Scholar 

  7. Hoque MO, Soria JC, Woo J et al (2006) Aquaporin 1 is overexpressed in lung cancer and stimulates NIH-3T3 cell proliferation and anchorage-independent growth. Am J Pathol 168:1345–1353. doi:10.2353/ajpath.2006.050596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jablonski E, Webb A, Hughes FM (2004) Water movement during apoptosis: a role for aquaporins in the apoptotic volume decrease (AVD). Adv Exp Med Biol 559:179–188

    Article  CAS  PubMed  Google Scholar 

  9. Krane CM, Melvin JE, Nguyen HV, Richardson L, Towne JE, Doetschman T, Menon AG (2001) Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem 276:23413–23420. doi:10.1074/jbc.M008760200

    Article  CAS  PubMed  Google Scholar 

  10. Borsani E (2010) Aquaporins in sensory and pain transmission. Curr Neuropharmacol 8:122–127. doi:10.2174/157015910791233187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee WK, Thévenod F (2006) A role for mitochondrial aquaporins in cellular life-and-death decisions? Am J Physiol Cell Physiol 291:C195–C202. doi:10.1152/ajpcell.00641.2005

    Article  CAS  PubMed  Google Scholar 

  12. Cho SJ, Sattar AK, Jeong EH, Satchi M, Cho JA, Dash S, Mayes MS, Stromer MH et al (2002) Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci U S A 99:4720–4724. doi:10.1073/pnas.072083499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu N, Feng X, He C, Gao H, Yang L, Ma Q, Guo L, Qiao Y et al (2011) Defective macrophage function in aquaporin-3 deficiency. FASEB J 25:4233–4239. doi:10.1096/fj.11-182808

    Article  CAS  PubMed  Google Scholar 

  14. Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22:367–378. doi:10.1097/00004647-200204000-00001

    Article  CAS  PubMed  Google Scholar 

  15. Tait MJ, Saadoum S, Bell BA, Popadopoulos M (2008) Water movements in the brain: the role of aquaporins. Trends Neurosci 31:37–43. doi:10.1016/j.tins.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  16. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranical pressure in mice lacking choroid plexus water channel aquaporin-1. FASEB J 19:76–78. doi:10.1096/fj.04-1711fje

    CAS  PubMed  Google Scholar 

  17. La Porta CA, Gena P, Gritti A, Fascio U, Svelto M, Calamita G (2006) Adult murine CNS stem cells express aquaporin channels. Biol Cell 98:89–94. doi:10.1042/BC20040153

    Article  CAS  PubMed  Google Scholar 

  18. Avril-Delplanque A, Casal I, Castillon N, Hinnrasky J, Puchelle E, Peault B (2005) Aquaporin-3 expression in human fetal airway epithelial progenitor cells. Stem Cells 23:992–1001. doi:10.1634/stemcells.2004-0197

    Article  CAS  PubMed  Google Scholar 

  19. Cavazzin C, Ferrari D, Facchetti F, Russignan A, Vescovi AL, La Porta CA, Gritti A (2006) Unique expression and localization of aquaporin-4 and aquaporin-9 in murine and human neural stem cells and in their glial progeny. Glia 53:167–181. doi:10.1002/glia.20256

    Article  PubMed  Google Scholar 

  20. Kong H, Fan Y, Xie J, Ding J, Sha L, Shi X, Sun X, Hu G (2008) AQP4 knockout impairs proliferation, migration and neuronal differentiation of adult neural stem cells. J Cell Sci 211:4029–4036. doi:10.1242/jcs.035758

    Article  Google Scholar 

  21. Yi F, Khan M, Gao H, Hao F, Sun M, Zhong L, Lu C, Feng X et al (2012) Increased differentiation capacity of bone marrow-derived mesenchymal stem cells in aquaporin-5 deficiency. Stem Cells Dev 21:2495–2507. doi:10.1089/scd.2011.0597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zelenina M, Zelenin S, Aperia A (2005) A water channels (aquaporins) and their role for postnatal adaptation. Pediatr Res 57:47R–53R. doi:10.1203/01.PDR.0000159572.79074.0B

    Article  PubMed  Google Scholar 

  23. Ashjian PH, Elbarbary AS, Edmonds B, De Ugarte D, Zhu M, Zuk PA, Lorenz HP, Benhaim P et al (2003) In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 111:1922–1931. doi:10.1097/01.PRS.0000055043.62589.05

    Article  PubMed  Google Scholar 

  24. Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber RM, Ewerbeck V et al (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 48:418–429. doi:10.1002/art.10767

    Article  CAS  PubMed  Google Scholar 

  25. Guilak F, Estes BT, Diekman BO, Moutos FT, Gimble JM (2010) Multipotent adult stem cells from adipose tissue for muscularskeletal tissue engineering. Clin Orthop Relat Res 468:2530–2540. doi:10.1007/s11999-010-1410-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Musumeci G, Lo Furno D, Loreto C, Giuffrida R, Caggia S, Leonardi R, Cardile V (2011) Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin. Exp Biol Med 236:1333–1341. doi:10.1258/ebm.2011.011183

    Article  CAS  Google Scholar 

  27. Musumeci G, Mobasheri A, Trovato FM, Szychlinska MA, Graziano AC, Lo Furno D, Avola R, Mangano S et al (2014) Biosynthesis of collagen I, II, RUNX2 and lubricin at different timepoints of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue. Acta Histochem 116:1407–1417. doi:10.1016/j.acthis.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  28. Lo Furno D, Pellitteri R, Graziano ACE, Giuffrida R, Vancheri C, Gili E, Cardile V (2013) Differentiation of human adipose stem cells into neural phenotype by neuroblastoma- or olfactory ensheathing cells-conditioned medium. J Cell Physiol 228:2109–2118. doi:10.1002/jcp.24386

    Article  CAS  PubMed  Google Scholar 

  29. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295. doi:10.1091/mbc.E02-02-0105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  CAS  PubMed  Google Scholar 

  31. Gilyarov AV (2008) Nestin in central nervous system cells. Neurosci Behav Physiol 38:165–169. doi:10.1007/s11055-008-0025-z

    Article  CAS  PubMed  Google Scholar 

  32. Rex M, Orme A, Uwanogho D, Tointon K, Wigmore PM, Sharpe PT, Scotting PJ (1997) Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm induced to form neural tissue. Dev Dyn 209:323–332. doi:10.1002/(SICI)1097-0177(199707)209:3<323::AID-AJA7>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  33. Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor. Identity 39:749–765

    CAS  Google Scholar 

  34. Bylund M, Andersson E, Novitch BG, Muhr J (2003) Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nat Neurosci 6:1162–1168. doi:10.1038/nn1131

    Article  CAS  PubMed  Google Scholar 

  35. Hutton SR, Pevny LH (2011) SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon. Dev Biol 352:40–47. doi:10.1016/j.ydbio.2011.01.015

    Article  CAS  PubMed  Google Scholar 

  36. Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR et al (2004) Nestin expression—a property of multi-lineage progenitor cells? Cell Mol Life Sci 61:2510–2522. doi:10.1007/s00018-004-4144-6

    Article  CAS  PubMed  Google Scholar 

  37. Copp AJ, Greene NDE (2010) Genetics and development of neural tube defects. J Pathol 220:217–230. doi:10.1002/path.2643

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, Mucci G, Zavan B (2013) Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 129:89–115. doi:10.1007/10_2012_152

    CAS  PubMed  Google Scholar 

  39. Li YC, Lin YC, Young TH (2012) Combination of media, biomaterials and extracellular matrix proteins to enhance the differentiation of neural stem/precursor cells into neurons. Acta Biomater 8:3035–3048. doi:10.1016/j.actbio.2012.04.036

    Article  CAS  PubMed  Google Scholar 

  40. Xu L, Ryu J, Hiel H, Menon A, Aggarwal A, Rha E, Mahairaki V, Cummings BJ et al (2015) Transplantation of human oligodendrocyte progenitor cells in an animal model of diffuse traumatic axonal injury: survival and differentiation. Stem Cell Res Ther 6:93. doi:10.1186/s13287-015-0087-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wen H, Nagelhus EA, Amiry-Moghaddam M, Agre P, Ottersen OP, Nielsen S (1999) Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur J Neurosci 11:935–945

    Article  CAS  PubMed  Google Scholar 

  42. Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90:7275–7279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Benga O, Huber VJ (2012) Brain water channel proteins in health and disease. Mol Asp Med 33:562–578. doi:10.1016/j.mam.2012.03.008

    Article  CAS  Google Scholar 

  44. Mobasheri A, Marples D (2004) Expression of the AQP-1 water channel in normal human tissues: a semi-quantitative study using tissue mircroarray technology. Am J Phys 286:C529–C537. doi:10.1152/ajpcell.00408.2003

    Article  CAS  Google Scholar 

  45. Badaut J, Regli L (2004) Distribution and possible roles of AQP9 in brain. Neurosci 129:971–981. doi:10.1016/j.neuroscience.2004.06.035

    Article  CAS  Google Scholar 

  46. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    Article  CAS  PubMed  Google Scholar 

  47. Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P (1997) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci U S A 91:13052–13056

    Article  Google Scholar 

  48. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    CAS  PubMed  Google Scholar 

  49. Solenov E, Watanabe H, Manley GT, Verkman AS (2003) Seven-fold reduced osmotic water permeability in primary astrocyte cultures from aquaporin-4 deficient mice measured by a calcein quenching method. Am J Physiol Cell Physiol 286:426–432. doi:10.1152/ajpcell.00298.2003

    Article  Google Scholar 

  50. Horio Y (2001) Potassium channels of glial cells: distribution and function. Jpn J Pharmacol 87:1–6

    Article  CAS  PubMed  Google Scholar 

  51. Ferri D, Mazzone A, Liquori GE, Cassano G, Svelto M, Calamita G (2003) Ontogeny, distribution, and possible functional implications of an unusual aquaporin, AQP8, in mouse liver. Hepatology 38:947–957. doi:10.1053/jhep.2003.50397

    Article  CAS  PubMed  Google Scholar 

  52. Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M (2005) The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 280:17149–17153. doi:10.1074/jbc.C400595200

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto N, Yoneda K, Asai K, Sobue K, Tada T, Fujita Y, Katsuya H, Fujita M et al (2001) Alterations in the expression of the AQP family in cultured rat astrocytes during hypoxia and reoxygenation. Brain Res Mol Brain Res 90:26–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to tank Prof. G. Musumeci, University of Catania, Department of Biomedical and Biotechnological Sciences, Section of Anatomy and Histology, and Prof. E. Barbagallo, University of Catania, Department of Drug Sciences, Section of Biochemistry, for having kindly provided AQP1 antibody and lipoaspirates, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venera Cardile.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Dedicated to the memory of Carmela Spatafora

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avola, R., Graziano, A.C.E., Pannuzzo, G. et al. Human Mesenchymal Stem Cells from Adipose Tissue Differentiated into Neuronal or Glial Phenotype Express Different Aquaporins. Mol Neurobiol 54, 8308–8320 (2017). https://doi.org/10.1007/s12035-016-0312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0312-6

Keywords

Navigation