Skip to main content
Log in

Primary Role for Kinin B1 and B2 Receptors in Glioma Proliferation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study investigated the role of kinins and their receptors in malignant brain tumors. As a first approach, GL-261 glioma cells were injected (2 × 105 cells in 2 μl/2 min) into the right striatum of adult C57/BL6 wild-type, kinin B1 and B2 receptor knockout (KOB1R and KOB2R) and B1 and B2 receptor double knockout mice (KOB1B2R). The animals received the selective B1R (SSR240612) and/or B2R (HOE-140) antagonists by intracerebroventricular (i.c.v.) route at 5, 10, and 15 days. The tumor size quantification, mitotic index, western blot analysis, quantitative autoradiography, immunofluorescence, and confocal microscopy were carried out in brain tumor samples, 20 days after tumor induction. Our results revealed an uncontrolled tumor growing in KOB1R or SSR240612-treated mice, which was blunted by B2R blockade with HOE-140, suggesting a crosstalk between B1R and B2R in tumor growing. Combined treatment with B1R and B2R antagonists normalized the upregulation of tumor B1R and decreased the tumor size and the mitotic index, as was seen in double KOB1B2R. The B1R was detected on astrocytes in the tumor, indicating a close relationship between this receptor and astroglial cells. Noteworthy, an immunohistochemistry analysis of tumor samples from 16 patients with glioma diagnosis revealed a marked B1R immunopositivity in low-grade gliomas or in older glioblastoma individuals. Furthermore, the clinical data revealed a significantly higher immunopositivity for B1R, when compared to a lower B2R immunolabeling. Taken together, our results show that blocking simultaneously both kinin receptors or alternatively stimulating B1R may be of therapeutic value in the treatment of brain glioblastoma growth and malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. doi:10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850. doi:10.1001/jama.2013.280319

    Article  CAS  PubMed  Google Scholar 

  4. Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist WF (2011) Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev Mol Med 13:e17. doi:10.1017/S1462399411001888

    Article  PubMed  PubMed Central  Google Scholar 

  5. Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57(1):27–77. doi:10.1124/pr.57.1.2

    Article  CAS  PubMed  Google Scholar 

  6. Regoli D, Plante GE, Gobeil F Jr (2012) Impact of kinins in the treatment of cardiovascular diseases. Pharmacol Ther 135(1):94–111 doi: 1016/j.pharmthera.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  7. Couture R, Blaes N, Girolami JP (2014) Kinin receptors in vascular biology and pathology. Curr Vasc Pharmacol 12(2):223–248 doi:CVP-EPUB-59365

    Article  CAS  PubMed  Google Scholar 

  8. Couture R, Lindsey CJ (2000) Brain kallikrein-kinin system: from receptors to neuronal pathways and physiological functions. In: Quirion R, Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy, vol 16. Elsevier Science, Oxford, pp. 241–300

    Google Scholar 

  9. Cote J, Bovenzi V, Savard M, Dubuc C, Fortier A, Neugebauer W, Tremblay L, Muller-Esterl W et al (2012) Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS One 7(5):e37485. doi:10.1371/journal.pone.0037485PONE-D-12-05042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu LB, Xue YX, Liu YH (2010) Bradykinin increases the permeability of the blood-tumor barrier by the caveolae-mediated transcellular pathway. J Neuro-Oncol 99(2):187–194. doi:10.1007/s11060-010-0124-x

    Article  CAS  Google Scholar 

  11. Cote J, Savard M, Bovenzi V, Dubuc C, Tremblay L, Tsanaclis AM, Fortin D, Lepage M et al (2010) Selective tumor blood-brain barrier opening with the kinin B2 receptor agonist [Phe(8)psi(CH(2)NH)Arg(9)]-BK in a F98 glioma rat model: an MRI study. Neuropeptides 44(2):177–185. doi:10.1016/j.npep.2009.12.009 24

    Article  CAS  PubMed  Google Scholar 

  12. Borlongan CV, Emerich DF (2003) Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Res Bull 60(3):297–306 doi:S0361923003000431

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, Xue Y, Liu Y, Fu W, Jiang N, An P, Wang P, Yang Z et al (2005) Study of correlation between expression of bradykinin B2 receptor and pathological grade in human gliomas. Br J Neurosurg 19(4):322–326. doi:10.1080/02688690500305555

    Article  PubMed  Google Scholar 

  14. Watkins S, Sontheimer H (2012) Unique biology of gliomas: challenges and opportunities. Trends Neurosci 35(9):546–556. doi:10.1016/j.tins.2012.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Montana V, Sontheimer H (2011) Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci 31(13):4858–4867. doi:10.1523/JNEUROSCI.3825-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsieh HL, Wu CY, Yang CM (2008) Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-delta-dependent ERK/elk-1 pathway in astrocytes. Glia 56(6):619–632. doi:10.1002/glia.20637

    Article  PubMed  Google Scholar 

  17. Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, Merrino VF, Kita S et al (2007) Bradykinin-induced microglial migration mediated by B1- bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci 27(48):13065–13073. doi:10.1523/JNEUROSCI.3467- 07.2007

    Article  CAS  PubMed  Google Scholar 

  18. Nicoletti NF, Erig TC, Zanin RF, Pereira TC, Bogo MR, Campos MM, Morrone FB (2014) Mechanisms involved in kinin-induced glioma cells proliferation: the role of ERK1/2 and PI3K/Akt pathways. J Neuro-Oncol 120(2):235–244. doi:10.1007/s11060-014-1549-4

    Article  CAS  Google Scholar 

  19. Andreansky S, He B, van Cott J, McGhee J, Markert JM, Gillespie GY, Roizman B, Whitley RJ (1998) Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Ther 5(1):121–130. doi:10.1038/sj.gt.3300550

    Article  CAS  PubMed  Google Scholar 

  20. Aulwurm S, Wischhusen J, Friese M, Borst J, Weller M (2006) Immune stimulatory effects of CD70 override CD70-mediated immune cell apoptosis in rodent glioma models and confer long-lasting antiglioma immunity in vivo. Int J Cancer 118(7):1728–1735. doi:10.1002/ijc.21544

    Article  CAS  PubMed  Google Scholar 

  21. Schleicher SM, Thotala DK, Linkous AG, Hu R, Leahy KM, Yazlovitskaya EM, Hallahan DE (2011) Autotaxin and LPA receptors represent potential molecular targets for the radiosensitization of murine glioma through effects on tumor vasculature. PLoS One 6(7):e22182. doi:10.1371/journal.pone.0022182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gehring MP, Kipper F, Nicoletti NF, Sperotto ND, Zanin R, Tamajusuku AS, Flores DG, Meurer L et al (2015) P2X7 receptor as predictor gene for glioma radiosensitivity and median survival. Int J Biochem Cell Biol 68:92–100. doi:10.1016/j.biocel.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  23. Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H, Safrany G (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553. doi:10.1111/j.1349-7006.2006.00208.x

    Article  CAS  PubMed  Google Scholar 

  24. Dias JP, Gariépy Hde B, Ongali B, Couture R (2015) Brain kinin B1 receptor is upregulated by the oxidative stress and its activation leads to stereotypic nociceptive behavior in insulin resistant rats. Peptides 69:118–126. doi:10.1016/j.peptides.2015.04.022

    Article  CAS  PubMed  Google Scholar 

  25. Quintao NL, Passos GF, Medeiros R, Paszcuk AF, Motta FL, Pesquero JB, Campos MM, Calixto JB (2008) Neuropathic pain-like behavior after brachial plexus avulsion in mice: the relevance of kinin B1 and B2 receptors. J Neurosci 28(11):2856–2863. doi:10.1523/JNEUROSCI.4389-07.2008

    Article  CAS  PubMed  Google Scholar 

  26. Costa R, Motta EM, Dutra RC, Manjavachi MN, Bento AF, Malinsky FR, Pesquero JB, Calixto JB (2011) Anti-nociceptive effect of kinin B(1) and B(2) receptor antagonists on peripheral neuropathy induced by paclitaxel in mice. Br J Pharmacol 164(2b):681–693. doi:10.1111/j.1476-5381.2011.01408.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin JC, Talbot S, Lahjouji K, Roy JP, Senecal J, Couture R, Morin A (2010) Mechanism of cigarette smoke-induced kinin B(1) receptor expression in rat airways. Peptides 31(10):1940–1945. doi:10.1016/j.peptides.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  28. Ongali B, Campos MM, Bregola G, Rodi D, Regoli D, Thibault G, Simonato M, Couture R (2003) Autoradiographic analysis of rat brain kinin B1 and B2 receptors: normal distribution and alterations induced by epilepsy. J Comp Neurol 461(4):506–519. doi:10.1002/cne.10706

    Article  CAS  PubMed  Google Scholar 

  29. Campos MM, Ongali B, Thibault G, Neugebauer W, Couture R (2005) Autoradiographic distribution and alterations of kinin B(2) receptors in the brain and spinal cord of streptozotocin diabetic rats. Synapse 58(3):184–192. doi:10.1002/syn.20196

    Article  CAS  PubMed  Google Scholar 

  30. Lacoste B, Tong XK, Lahjouji K, Couture R, Hamel E (2013) Cognitive and cerebrovascular improvements following kinin B1 receptor blockade in Alzheimer’s disease mice. J Neuroinflammation 10:57. doi:10.1186/1742-2094-10-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gougat, J, Ferrari, B, Sarran, L, Planchenault, C, Poncelet, M, Maruani, J, Alonso, R, Cudennec, A, Croci, T, Guagnini, F, Urban-Szabo, K, Martinolle, JP, Soubrie, P, Finance, O, Le Fur, G (2004) SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther 309 (2):661–669. doi: 10.1124/jpet.103.059527jpet.103.05952726

  32. Gobeil F, Neugebauer W, Filteau C, Jukic D, Allogho SN, Pheng LH, Nguyen-Le XK, Blouin D et al (1996) Structure-activity studies of B1 receptor-related peptides. Antagonists Hypertension 28(5):833–839

    Article  CAS  PubMed  Google Scholar 

  33. Figueroa CD, Ehrenfeld P, Bhoola KD (2012) Kinin receptors as targets for cancer therapy. Expert Opin Ther Targets 16(3):299–312. doi:10.1517/14728222.2012.662957

    Article  CAS  PubMed  Google Scholar 

  34. Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein Cell 1(7):638–655. doi:10.1007/s13238-010-0078-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sarin H, Kanevsky AS, Fung SH, Butman JA, Cox RW, Glen D, Reynolds R, Auh S (2009) Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life. J Transl Med 7:33. doi:10.1186/1479-5876-7-33

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cote J, Savard M, Neugebauer W, Fortin D, Lepage M, Gobeil F (2013) Dual kinin B1 and B2 receptor activation provides enhanced blood-brain barrier permeability and anticancer drug delivery into brain tumors. Cancer Biol Ther 14(9):806–811. doi:10.4161/cbt.25327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathieu D, Fortin D (2006) The role of chemotherapy in the treatment of malignant astrocytomas. Can J Neurol Sci 33(2):127–140

    Article  PubMed  Google Scholar 

  38. Nieder C, Mehta MP, Jalali R (2009) Combined radio- and chemotherapy of brain tumours in adult patients. Clin Oncol (R Coll Radiol) 21(7):515–524. doi:10.1016/j.clon.2009.05.003

    Article  CAS  Google Scholar 

  39. Thornton E, Ziebell JM, Leonard AV, Vink R (2010) Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury. Molecules 15(9):6598–6618. doi:10.3390/molecules15096598

    Article  CAS  PubMed  Google Scholar 

  40. Austinat M, Braeuninger S, Pesquero JB, Brede M, Bader M, Stoll G, Renne T, Kleinschnitz C (2009) Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke 40(1):285–293. doi:10.1161/STROKEAHA.108.526673

    Article  CAS  PubMed  Google Scholar 

  41. Avdieiev S, Gera L, Havrylyuk D, Hodges RS, Lesyk R, Ribrag V, Vassetzky Y, Kavsan V (2014) Bradykinin antagonists and thiazolidinone derivatives as new potential anti-cancer compounds. Bioorg Med Chem 22(15):3815–3823. doi:10.1016/j.bmc.2014.06.046

    Article  CAS  PubMed  Google Scholar 

  42. Marceau F, Regoli D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3(10):845–852. doi:10.1038/nrd1522nrd1522

    Article  CAS  PubMed  Google Scholar 

  43. Calixto JB, Cabrini DA, Ferreira J, Campos MM (2000) Kinins in pain and inflammation. Pain 87(1):1–5 doi: S0304-3959(00)00335-3 27

    Article  CAS  PubMed  Google Scholar 

  44. da Costa PL, Sirois P, Tannock IF, Chammas R (2014) The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett 345(1):27–38. doi:10.1016/j.canlet.2013.12.009

    Article  PubMed  Google Scholar 

  45. Fidler IJ, Balasubramanian K, Lin Q, Kim SW, Kim SJ (2010) The brain microenvironment and cancer metastasis. Mol Cells 30(2):93–98. doi:10.1007/s10059-010-0133-9

    Article  CAS  PubMed  Google Scholar 

  46. Duka A, Kintsurashvili E, Duka I, Ona D, Hopkins TA, Bader M, Gavras I, Gavras H (2008) Angiotensin-converting enzyme inhibition after experimental myocardial infarct: role of the kinin B1 and B2 receptors. Hypertension 51(5):1352–1357. doi:10.1161/HYPERTENSIONAHA.107.108506

    Article  CAS  PubMed  Google Scholar 

  47. Seguin T, Buleon M, Destrube M, Ranera MT, Couture R, Girolami JP, Tack I (2008) Hemodynamic and renal involvement of B1 and B2 kinin receptors during the acute phase of endotoxin shock in mice. Int Immunopharmacol 8(2):217–221 doi: 1016/j.intimp.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  48. Rodi D, Buzzi A, Barbieri M, Zucchini S, Verlengia G, Binaschi A, Regoli D, Boschi A et al (2013) Bradykinin B2 receptors increase hippocampal excitability and susceptibility to seizures in mice. Neuroscience 248C:392–402. doi:10.1016/j.neuroscience.2013.06.038

    Article  Google Scholar 

  49. Marcon R, Claudino RF, Dutra RC, Bento AF, Schmidt EC, Bouzon ZL, Sordi R, Morais RL et al (2013) Exacerbation of DSS-induced colitis in mice lacking kinin B(1) receptors through compensatory up-regulation kinin B(2) receptors: the role of tight junctions and intestinal homeostasis. Br J Pharmacol 168(2):389–402. doi:10.1111/j.1476-5381.2012.02136.x

    Article  CAS  PubMed  Google Scholar 

  50. Schulze-Topphoff U, Prat A, Prozorovski T, Siffrin V, Paterka M, Herz J, Bendix I, Ifergan I et al (2009) Activation of kinin B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nat Med 15(7):788–793. doi:10.1038/nm.1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dillenburg-Pilla P, Maria AG, Reis RI, Floriano EM, Pereira CD, De Lucca FL, Ramos SG, Pesquero JB et al (2013) Activation of the kinin B1 receptor attenuates melanoma tumor growth and metastasis. PLoS One 8(5):e64453. doi:10.1371/journal.pone.0064453PONE-D-12-25300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772. doi:10.1158/1078-0432.CCR-12-3002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Youssef Haddad for his excellent technical assistance in western blot analysis and Mrs. Julie Verner for her technical support in cell culture at the Université de Montréal. We recognize the expert technical assistance of Mrs. Janaína Silva in the immunohistochemistry analysis. We are grateful to Dr. Marcelo Paglioli Ferreira, Dr. Paulo Valdeci Worm, and Dr. Jorge Luiz Kraemer, from the Department of Neurosurgery, São José Hospital—ISCMPA (Brazil), for donating the human tissue specimens.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Réjean Couture or Fernanda Bueno Morrone.

Ethics declarations

All the experimental procedures were in accord to the Principles of Laboratory Animal Care from NIH and approved by the Animal Ethical Committee of the Pontifícia Universidade Católica do Rio Grande do Sul, Brazil (protocol number 11/00258) and Université de Montréal, Canada (protocol number 13-040).

Conflict of Interest

The authors declare that they have no conflict of interest.

Financial Support

This study was supported by the FINEP research grant “Implantação, Modernização e Qualificação de Estrutura de Pesquisa da PUCRS” (PUCRSINFRA) no. 01.11.0014-00, CNPq, CAPES, and FAPERGS and by the Canadian Institutes of Health Research to RC (MOP-119329).

NFN was a PhD student in Cellular and Molecular Biology receiving a grant from CAPES (AUX-PE/Toxinologia), CAPES/PDSE, and PROBOLSAS/PUCRS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicoletti, N.F., Sénécal, J., da Silva, V.D. et al. Primary Role for Kinin B1 and B2 Receptors in Glioma Proliferation. Mol Neurobiol 54, 7869–7882 (2017). https://doi.org/10.1007/s12035-016-0265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0265-9

Keywords

Navigation