Skip to main content

Advertisement

Log in

miR Cluster 143/145 Directly Targets Nrl and Regulates Rod Photoreceptor Development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Retinal histogenesis requires coordinated and temporal functioning of factors by which different cell types are generated from multipotent progenitors. Development of rod photoreceptors is regulated by multiple transcription factors, and Nrl is one of the major factors involved in their fate specification. Presence or absence of Nrl at the postnatal stages decides the generation of cone photoreceptors or other later retinal cells. This suggests the need for regulated expression of Nrl in order to accelerate the generation of other cell types during retinal development. We found that miR cluster 143/145, comprising miR-143 and miR-145, targets and imparts a posttranscriptional inhibition of Nrl. Expression of both miRNAs was differentially regulated during retinal development and showed least expression at PN1 stage in which most of the rod photoreceptors are generated. Downregulation of rod photoreceptor regulators and markers upon miR cluster 143/145 overexpression demonstrated that this cluster indeed negatively regulates rod photoreceptors. Further, we prove that Nrl positively regulates miR cluster 143/145, thus establishing a feedback loop regulatory mechanism. This may be one possible mechanism by which Nrl is posttranscriptionally regulated to facilitate the generation of other cell types in retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cepko CL (1999) The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr Opin Neurobiol 9(1):37–46

    Article  CAS  PubMed  Google Scholar 

  2. Young RW (1985) Cell differentiation in the retina of the mouse. Anat Rec 212(2):199–205. doi:10.1002/ar.1092120215

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad I, Das AV, James J, Bhattacharya S, Zhao X (2004) Neural stem cells in the mammalian eye: types and regulation. Semin Cell Dev Biol 15(1):53–62. doi:10.1016/j.semcdb.2003.09.003

    Article  CAS  PubMed  Google Scholar 

  4. Anchan RM, Reh TA, Angello J, Balliet A, Walker M (1991) EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6(6):923–936

    Article  CAS  PubMed  Google Scholar 

  5. Fu X, Kiyama T, Li R, Russell M, Klein WH, Mu X (2009) Epitope-tagging Math5 and Pou4f2: new tools to study retinal ganglion cell development in the mouse. Developmental dynamics: an official publication of the American Association of Anatomists 238(9):2309–2317. doi:10.1002/dvdy.21974

    Article  CAS  Google Scholar 

  6. Liu W, Mo Z, Xiang M (2001) The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development. Proc Natl Acad Sci U S A 98(4):1649–1654. doi:10.1073/pnas.98.4.1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dyer MA, Livesey FJ, Cepko CL, Oliver G (2003) Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet 34(1):53–58. doi:10.1038/ng1144

    Article  CAS  PubMed  Google Scholar 

  8. Chen CM, Cepko CL (2000) Expression of Chx10 and Chx10-1 in the developing chicken retina. Mech Dev 90(2):293–297

    Article  CAS  PubMed  Google Scholar 

  9. Ahmad I, Acharya HR, Rogers JA, Shibata A, Smithgall TE, Dooley CM (1998) The role of NeuroD as a differentiation factor in the mammalian retina. Journal of molecular neuroscience: MN 11(2):165–178. doi:10.1385/JMN:11:2:165

    Article  CAS  PubMed  Google Scholar 

  10. Yan RT, Wang SZ (1998) neuroD induces photoreceptor cell overproduction in vivo and de novo generation in vitro. J Neurobiol 36(4):485–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Furukawa T, Morrow EM, Cepko CL (1997) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91(4):531–541

    Article  CAS  PubMed  Google Scholar 

  12. Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL (1999) Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet 23(4):466–470. doi:10.1038/70591

    Article  CAS  PubMed  Google Scholar 

  13. Swain PK, Hicks D, Mears AJ, Apel IJ, Smith JE, John SK, Hendrickson A, Milam AH et al (2001) Multiple phosphorylated isoforms of NRL are expressed in rod photoreceptors. J Biol Chem 276(39):36824–36830. doi:10.1074/jbc.M105855200

    Article  CAS  PubMed  Google Scholar 

  14. Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, Sieving PA, Swaroop A (2001) Nrl is required for rod photoreceptor development. Nat Genet 29(4):447–452. doi:10.1038/ng774

    Article  CAS  PubMed  Google Scholar 

  15. Ahmad I, Dooley CM, Afiat S (1998) Involvement of Mash1 in EGF-mediated regulation of differentiation in the vertebrate retina. Dev Biol 194(1):86–98. doi:10.1006/dbio.1997.8809

    Article  CAS  PubMed  Google Scholar 

  16. Lillien L, Cepko C (1992) Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF alpha. Development 115(1):253–266

    CAS  PubMed  Google Scholar 

  17. Hicks D, Courtois Y (1992) Fibroblast growth factor stimulates photoreceptor differentiation in vitro. J Neurosci Off J Soc Neurosci 12(6):2022–2033

    CAS  Google Scholar 

  18. Ezzeddine ZD, Yang X, DeChiara T, Yancopoulos G, Cepko CL (1997) Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124(5):1055–1067

    CAS  PubMed  Google Scholar 

  19. Kelley MW, Turner JK, Reh TA (1994) Retinoic acid promotes differentiation of photoreceptors in vitro. Development 120(8):2091–2102

    CAS  PubMed  Google Scholar 

  20. Levine EM, Roelink H, Turner J, Reh TA (1997) Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro. J Neurosci Off J Soc Neurosci 17(16):6277–6288

    CAS  Google Scholar 

  21. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132(21):4653–4662. doi:10.1242/dev.02073

    Article  CAS  PubMed  Google Scholar 

  22. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  23. Jovanovic M, Hengartner MO (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25(46):6176–6187. doi:10.1038/sj.onc.1209912

    Article  CAS  PubMed  Google Scholar 

  24. Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Lett 579(26):5911–5922. doi:10.1016/j.febslet.2005.07.070

    Article  CAS  PubMed  Google Scholar 

  25. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531. doi:10.1038/nrg1379

    Article  CAS  PubMed  Google Scholar 

  26. Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D (2007) MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 282(34):25053–25066. doi:10.1074/jbc.M700501200

    Article  CAS  PubMed  Google Scholar 

  27. Karali M, Manfredi A, Puppo A, Marrocco E, Gargiulo A, Allocca M, Corte MD, Rossi S et al (2011) MicroRNA-restricted transgene expression in the retina. PLoS One 6(7):e22166. doi:10.1371/journal.pone.0022166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loscher CJ, Hokamp K, Kenna PF, Ivens AC, Humphries P, Palfi A, Farrar GJ (2007) Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa. Genome Biol 8(11):R248. doi:10.1186/gb-2007-8-11-r248

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ryan DG, Oliveira-Fernandes M, Lavker RM (2006) MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol Vis 12:1175–1184

    CAS  PubMed  Google Scholar 

  30. Lumayag S, Haldin CE, Corbett NJ, Wahlin KJ, Cowan C, Turturro S, Larsen PE, Kovacs B et al (2013) Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci U S A 110(6):E507–E516. doi:10.1073/pnas.1212655110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Li C, Chen Z, He J, Tao Z, Yin ZQ (2012) A microRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats. Cell Signal 24(3):685–698. doi:10.1016/j.cellsig.2011.10.017

    Article  CAS  PubMed  Google Scholar 

  32. Silva VA, Polesskaya A, Sousa TA, Correa VM, Andre ND, Reis RI, Kettelhut IC, Harel-Bellan A et al (2011) Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis 17:2228–2240

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Iida A, Shinoe T, Baba Y, Mano H, Watanabe S (2011) Dicer plays essential roles for retinal development by regulation of survival and differentiation. Invest Ophthalmol Vis Sci 52(6):3008–3017. doi:10.1167/iovs.10-6428

    Article  CAS  PubMed  Google Scholar 

  34. Pinter R, Hindges R (2010) Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm. PLoS One 5(4):e10021. doi:10.1371/journal.pone.0010021

    Article  PubMed  PubMed Central  Google Scholar 

  35. Damiani D, Alexander JJ, O’Rourke JR, McManus M, Jadhav AP, Cepko CL, Hauswirth WW, Harfe BD et al (2008) Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 28(19):4878–4887. doi:10.1523/JNEUROSCI.0828-08.2008

    Article  CAS  Google Scholar 

  36. Georgi SA, Reh TA (2010) Dicer is required for the transition from early to late progenitor state in the developing mouse retina. J Neurosci Off J Soc Neurosci 30(11):4048–4061. doi:10.1523/JNEUROSCI.4982-09.2010

    Article  CAS  Google Scholar 

  37. La Torre A, Georgi S, Reh TA (2013) Conserved microRNA pathway regulates developmental timing of retinal neurogenesis. Proc Natl Acad Sci U S A 110(26):E2362–E2370. doi:10.1073/pnas.1301837110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Decembrini S, Bressan D, Vignali R, Pitto L, Mariotti S, Rainaldi G, Wang X, Evangelista M et al (2009) MicroRNAs couple cell fate and developmental timing in retina. Proc Natl Acad Sci U S A 106(50):21179–21184. doi:10.1073/pnas.0909167106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105. doi:10.1016/j.molcel.2007.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi:10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  41. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153. doi:10.1093/nar/gkm995

    CAS  PubMed  Google Scholar 

  42. Rusinov V, Baev V, Minkov IN, Tabler M (2005) MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 33(Web Server issue):W696–W700. doi:10.1093/nar/gki364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rasheed VA, Sreekanth S, Dhanesh SB, Divya MS, Divya TS, Akhila PK, Subashini C, Chandrika Sivakumar K et al (2014) Developmental wave of Brn3b expression leading to RGC fate specification is synergistically maintained by miR-23a and miR-374. Developmental neurobiology 74(12):1155–1171. doi:10.1002/dneu.22191

    Article  CAS  PubMed  Google Scholar 

  44. James J, Das AV, Bhattacharya S, Chacko DM, Zhao X, Ahmad I (2003) In vitro generation of early-born neurons from late retinal progenitors. J Neurosci Off J Soc Neurosci 23(23):8193–8203

    CAS  Google Scholar 

  45. Das AV, James J, Zhao X, Rahnenfuhrer J, Ahmad I (2004) Identification of c-Kit receptor as a regulator of adult neural stem cells in the mammalian eye: interactions with Notch signaling. Dev Biol 273(1):87–105. doi:10.1016/j.ydbio.2004.05.023

    Article  CAS  PubMed  Google Scholar 

  46. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  47. Das AV, James J, Bhattacharya S, Imbalzano AN, Antony ML, Hegde G, Zhao X, Mallya K et al (2007) SWI/SNF chromatin remodeling ATPase Brm regulates the differentiation of early retinal stem cells/progenitors by influencing Brn3b expression and Notch signaling. J Biol Chem 282(48):35187–35201. doi:10.1074/jbc.M706742200

    Article  CAS  PubMed  Google Scholar 

  48. Sanalkumar R, Indulekha CL, Divya TS, Divya MS, Anto RJ, Vinod B, Vidyanand S, Jagatha B et al (2010) ATF2 maintains a subset of neural progenitors through CBF1/Notch independent Hes-1 expression and synergistically activates the expression of Hes-1 in Notch-dependent neural progenitors. J Neurochem 113(4):807–818. doi:10.1111/j.1471-4159.2010.06574.x

    Article  CAS  PubMed  Google Scholar 

  49. Indulekha CL, Divya TS, Divya MS, Sanalkumar R, Rasheed VA, Dhanesh SB, Sebin A, George A et al (2012) Hes-1 regulates the excitatory fate of neural progenitors through modulation of Tlx3 (HOX11L2) expression. Cellular and molecular life sciences: CMLS 69(4):611–627. doi:10.1007/s00018-011-0765-8

    Article  CAS  PubMed  Google Scholar 

  50. Das AV, Bhattacharya S, Zhao X, Hegde G, Mallya K, Eudy JD, Ahmad I (2008) The canonical Wnt pathway regulates retinal stem cells/progenitors in concert with Notch signaling. Dev Neurosci 30(6):389–409. doi:10.1159/000178017

    Article  CAS  PubMed  Google Scholar 

  51. Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB (2002) Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23(1):143–150

    Article  CAS  PubMed  Google Scholar 

  52. Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH, Liu S, Leach SD et al (2010) Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 24(24):2754–2759. doi:10.1101/gad.1950610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Milam AH, Rose L, Cideciyan AV, Barakat MR, Tang WX, Gupta N, Aleman TS, Wright AF et al (2002) The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc Natl Acad Sci U S A 99(1):473–478. doi:10.1073/pnas.022533099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Akimoto M, Cheng H, Zhu D, Brzezinski JA, Khanna R, Filippova E, Oh EC, Jing Y et al (2006) Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Proc Natl Acad Sci U S A 103(10):3890–3895. doi:10.1073/pnas.0508214103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rehemtulla A, Warwar R, Kumar R, Ji X, Zack DJ, Swaroop A (1996) The basic motif-leucine zipper transcription factor Nrl can positively regulate rhodopsin gene expression. Proc Natl Acad Sci U S A 93(1):191–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Doberstein K, Steinmeyer N, Hartmetz AK, Eberhardt W, Mittelbronn M, Harter PN, Juengel E, Blaheta R et al (2013) MicroRNA-145 targets the metalloprotease ADAM17 and is suppressed in renal cell carcinoma patients. Neoplasia 15(2):218–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fang X, Yoon JG, Li L, Yu W, Shao J, Hua D, Zheng S, Hood L et al (2011) The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics 12:11. doi:10.1186/1471-2164-12-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xia H, Yamada S, Aoyama M, Sato F, Masaki A, Ge Y, Ri M, Ishida T et al (2014) Prognostic impact of microRNA-145 down-regulation in adult T-cell leukemia/lymphoma. Hum Pathol 45(6):1192–1198. doi:10.1016/j.humpath.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  59. Elliott J, Jolicoeur C, Ramamurthy V, Cayouette M (2008) Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron 60(1):26–39. doi:10.1016/j.neuron.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  60. D’Autilia S, Decembrini S, Casarosa S, He RQ, Barsacchi G, Cremisi F, Andreazzoli M (2006) Cloning and developmental expression of the Xenopus homeobox gene Xvsx1. Dev Genes Evol 216(12):829–834. doi:10.1007/s00427-006-0109-0

    PubMed  Google Scholar 

  61. Decembrini S, Andreazzoli M, Vignali R, Barsacchi G, Cremisi F (2006) Timing the generation of distinct retinal cells by homeobox proteins. PLoS Biol 4(9):e272. doi:10.1371/journal.pbio.0040272

    Article  PubMed  PubMed Central  Google Scholar 

  62. Viczian AS, Vignali R, Zuber ME, Barsacchi G, Harris WA (2003) XOtx5b and XOtx2 regulate photoreceptor and bipolar fates in the Xenopus retina. Development 130(7):1281–1294

    Article  CAS  PubMed  Google Scholar 

  63. Perron M, Harris WA (2000) Determination of vertebrate retinal progenitor cell fate by the Notch pathway and basic helix-loop-helix transcription factors. Cellular and molecular life sciences: CMLS 57(2):215–223

    Article  CAS  PubMed  Google Scholar 

  64. Koike C, Nishida A, Ueno S, Saito H, Sanuki R, Sato S, Furukawa A, Aizawa S et al (2007) Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol Cell Biol 27(23):8318–8329. doi:10.1128/MCB.01209-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Swaroop A, Kim D, Forrest D (2010) Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 11(8):563–576. doi:10.1038/nrn2880

    Article  CAS  PubMed  Google Scholar 

  66. Brzezinski JA, Lamba DA, Reh TA (2010) Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development 137(4):619–629. doi:10.1242/dev.043968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Katoh K, Omori Y, Onishi A, Sato S, Kondo M, Furukawa T (2010) Blimp1 suppresses Chx10 expression in differentiating retinal photoreceptor precursors to ensure proper photoreceptor development. J Neurosci Off J Soc Neurosci 30(19):6515–6526. doi:10.1523/JNEUROSCI.0771-10.2010

    Article  CAS  Google Scholar 

  68. Jia L, Oh EC, Ng L, Srinivas M, Brooks M, Swaroop A, Forrest D (2009) Retinoid-related orphan nuclear receptor RORbeta is an early-acting factor in rod photoreceptor development. Proc Natl Acad Sci U S A 106(41):17534–17539. doi:10.1073/pnas.0902425106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Srinivas M, Ng L, Liu H, Jia L, Forrest D (2006) Activation of the blue opsin gene in cone photoreceptor development by retinoid-related orphan receptor beta. Mol Endocrinol 20(8):1728–1741. doi:10.1210/me.2005-0505

    Article  CAS  PubMed  Google Scholar 

  70. Karali M, Peluso I, Marigo V, Banfi S (2007) Identification and characterization of microRNAs expressed in the mouse eye. Invest Ophthalmol Vis Sci 48(2):509–515. doi:10.1167/iovs.06-0866

    Article  PubMed  Google Scholar 

  71. Das AV, Pillai RM (2015) Implications of miR cluster 143/145 as universal anti-oncomiRs and their dysregulation during tumorigenesis. Cancer Cell Int 15:92. doi:10.1186/s12935-015-0247-4

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658. doi:10.1016/j.cell.2009.02.038

    Article  CAS  PubMed  Google Scholar 

  73. Lee SK, Teng Y, Wong HK, Ng TK, Huang L, Lei P, Choy KW, Liu Y et al (2011) MicroRNA-145 regulates human corneal epithelial differentiation. PLoS One 6(6):e21249. doi:10.1371/journal.pone.0021249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Batliner J, Buehrer E, Fey MF, Tschan MP (2012) Inhibition of the miR-143/145 cluster attenuated neutrophil differentiation of APL cells. Leuk Res 36(2):237–240. doi:10.1016/j.leukres.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  75. Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A (2011) Down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem 286(32):28097–28110. doi:10.1074/jbc.M111.236950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Karali M, Peluso I, Gennarino VA, Bilio M, Verde R, Lago G, Dolle P, Banfi S (2010) miRNeye: a microRNA expression atlas of the mouse eye. BMC Genomics 11:715. doi:10.1186/1471-2164-11-715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hackler L Jr, Wan J, Swaroop A, Qian J, Zack DJ (2010) MicroRNA profile of the developing mouse retina. Invest Ophthalmol Vis Sci 51(4):1823–1831. doi:10.1167/iovs.09-4657

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M, Wu K, Whittle J et al (2008) A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 182(3):509–517. doi:10.1083/jcb.200801079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Ruby John Anto, Scientist F, and Dr. Jackson James, Scientist EII, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India for helping us with EMSA experiments and critical evaluation of the manuscript, respectively. We extend our gratitude towards Dr. Anand Swaroop, NEI, MD, USA for Nrl expression vectors, and Dr. Beena Pillai, IGIB, New Delhi for pRIPM, pSilencer, and pSicheck2 vectors. We also thank Prof. Kageyama, Kyoto University, Japan for d2EGFP construct.

Author Contributions

S.S. performed the miR and target interaction, miR perturbation, and Western blot experiments; V.A.R. was involved in cloning the pre-miR and 3′UTR sequences and ex vivo experiments; L.S. performed RT-PCR experiments; J.A and M.S. carried out EMSA experiments; K.C.S. did the bioinformatic analysis; and A.V.D. conceived the idea, designed the experiments, and prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ani V Das.

Ethics declarations

Competing Interests

The authors declare no competing or financial interests.

Funding

This work was supported by funding from the Department of Science & Technology, Government of India and intramural funding from Rajiv Gandhi Centre for Biotechnology, Kerala, India.

Electronic supplementary material

Fig. S1

(JPEG 102 kb)

Fig. S2

(JPEG 80 kb)

Fig. S3

(JPEG 458 kb)

Fig. S4

(JPEG 848 kb)

Table S1

(DOCX 16 kb)

Table S2

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreekanth, S., Rasheed, V.A., Soundararajan, L. et al. miR Cluster 143/145 Directly Targets Nrl and Regulates Rod Photoreceptor Development. Mol Neurobiol 54, 8033–8049 (2017). https://doi.org/10.1007/s12035-016-0237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0237-0

Keywords

Navigation