Skip to main content
Log in

Rodent Gymnastics: Neurobehavioral Assays in Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Despite years of research, most preclinical trials on ischemic stroke have remained unsuccessful owing to poor methodological and statistical standards leading to “translational roadblocks.” Various behavioral tests have been established to evaluate traits such as sensorimotor function, cognitive and social interactions, and anxiety-like and depression-like behavior. A test’s validity is of cardinal importance as it influences the chance of a successful translation of preclinical results to clinical settings. The mission of choosing a behavioral test for a particular project is, therefore, imperative and the present review aims to provide a structured way to evaluate rodent behavioral tests with implications in ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Markgraf CG, Green EJ, Hurwitz BE, Morikawa E, Dietrich WD, McCabe PM, Ginsberg MD, Schneiderman N (1992) Sensorimotor and cognitive consequences of middle cerebral artery occlusion in rats. Brain Res 575:238–246

    Article  CAS  PubMed  Google Scholar 

  2. Hattori K, Lee H, Hurn PD, Crain BJ, Traystman RJ, DeVries AC (2000) Cognitive deficits after focal cerebral ischemia in mice. Stroke 31:1939–1944

    Article  CAS  PubMed  Google Scholar 

  3. Traystman RJ (2003) Animal models of focal and global cerebral ischemia. ILAR J 44:85–95

    Article  CAS  PubMed  Google Scholar 

  4. Stroke Therapy Academic Industry Roundtable (STAIR) (1999) Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30:2752–2758

    Article  Google Scholar 

  5. Schallert T, Upchurch M, Lobaugh N, Farrar SB, Spirduso WW, Gilliam P, Vaughn D, Wilcox RE (1982) Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav 16:455–462

    Article  CAS  PubMed  Google Scholar 

  6. Heilman KM, Valenstein E, Watson RT (2000) Neglect and related disorders. Semin Neurol 20:463–470

    Article  CAS  PubMed  Google Scholar 

  7. Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T (2009) The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 4:1560–1564

    Article  CAS  PubMed  Google Scholar 

  8. Freret T, Chazalviel L, Roussel S, Bernaudin M, Schumann-Bard P, Boulouard M (2006) Long-term functional outcome following transient middle cerebral artery occlusion in the rat—correlation between brain damage and behavioral impairment. Behav Neurosci 120:1285–1298

    Article  PubMed  Google Scholar 

  9. Freret T, Bouet V, Leconte C, Roussel S, Chazalviel L, Divoux D, Schumann-Bard P, Boulouard M (2009) Behavioral deficits after distal focal cerebral ischemia in mice: usefulness of adhesive removal test. Behav Neurosci 123:224–230

    Article  PubMed  Google Scholar 

  10. Ishibashi S, Kuroiwa T, Endo S, Okeda R, Mizusawa H (2003) Neurological dysfunctions versus regional infarction volume after focal ischemia in Mongolian gerbils. Stroke 34:1501–1506

    Article  PubMed  Google Scholar 

  11. Komotar RJ, Kim GH, Sughrue ME, Otten ML, Rynkowski MA, Kellner CP, Hahn DK, Merkow MB et al (2007) Neurologic assessment of somatosensory dysfunction following an experimental rodent model of cerebral ischemia. Nat Protoc 2:2345–2347

    Article  CAS  PubMed  Google Scholar 

  12. Freret T, Bouet V, Toutain J, Saulnier R, Pro-Sistiaga P, Bihel E, Mackenzie ET, Roussel S et al (2008) Intraluminal thread model of focal stroke in the nonhuman primate. J Cereb Blood Flow Metab 28:786–796

    Article  PubMed  Google Scholar 

  13. Schaar KL, Brenneman MM, Savitz SI (2010) Functional assessments in the rodent stroke model. Exp Transl Stroke Med 2:13

    Article  PubMed  PubMed Central  Google Scholar 

  14. Esneault E, Castagne V, Moser P, Bonny C, Bernaudin M (2008) D-JNKi, a peptide inhibitor of c-Jun N-terminal kinase, promotes functional recovery after transient focal cerebral ischemia in rats. Neuroscience 152:308–320

    Article  CAS  PubMed  Google Scholar 

  15. Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S et al (2007) One year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke 38:2150–2156

    Article  PubMed  Google Scholar 

  16. Pan Y, Zhang H, Acharya AB, Patrick PH, Oliver D, Morley JE (2005) Effect of testosterone on functional recovery in a castrate male rat stroke model. Brain Res 1043:195–204

    Article  CAS  PubMed  Google Scholar 

  17. Morris DC, Chopp M, Zhang L, Lu M, Zhang ZG (2010) Thymosin beta4 improves functional neurological outcome in a rat model of embolic stroke. Neuroscience 169:674–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rehni AK, Singh N, Jaggi AS, Singh M (2007) Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav Brain Res 183:95–100

    Article  CAS  PubMed  Google Scholar 

  19. Buytendijk FJJ (1932) An experimental investigation into the influence of cortical lesions on the behaviour of rats. Arch Neerl Physiol L’Homme Anim 17:370–434

    Google Scholar 

  20. Maier NRF (1935) The cortical area concerned with coordinated walking in the rat. J Comp Neurol 61:395–405

    Article  Google Scholar 

  21. Gentile AM, Green S, Nieburgs A, Schmelzer W, Stein DG (1978) Disruption and recovery of locomotor and manipulatory behavior following cortical lesions in rats. Behav Biol 22:417–455

    Article  CAS  PubMed  Google Scholar 

  22. Goldstein LB (1993) Rapid reliable measurement of lesion parameters for studies of motor recovery after sensorimotor cortexinjury in the rat. J Neurosci Methods 48:35–42

    Article  CAS  PubMed  Google Scholar 

  23. van Groen T, Puurunen K, Mäki HM, Sivenius J, Jolkkonen J (2005) Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats. Stroke 36:1551–1556

    Article  PubMed  Google Scholar 

  24. Qu HL, Zhao M, Zhao SS, Xiao T, Song CG, Cao YP, Jolkkonen J, Zhao CS (2015) Forced limb-use enhanced neurogenesis and behavioral recovery after stroke in the aged rats. Neuroscience 286:316–324

    Article  CAS  PubMed  Google Scholar 

  25. Woodworth KN, Palmateer J, Swide J, Grafe MR (2011) Short- and long-term behavioral effects of exposure to 21 %, 40 % and 100 % oxygen after perinatal hypoxia-ischemia in the rat. Int J Dev Neurosci 29:629–638

    Article  PubMed  Google Scholar 

  26. Mestriner RG, Miguel PM, Bagatini PB (2013) Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats. Behav Brain Res 244:82–89

    Article  PubMed  Google Scholar 

  27. Balkaya M, Kröber J, Gertz K (2013) Characterization of long-term functional outcome in a murine model of mild brain ischemia. J Neurosci Methods 213:179–187

    Article  PubMed  Google Scholar 

  28. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  29. Russell KL, Kutchko KM, Fowler SC, Berman NEJ, Levant B (2011) Sensorimotor behavioral tests for use in a juvenile rat model of traumatic brain injury: assessment of sex differences. J Neurosci Methods 199:214–222

    Article  PubMed  PubMed Central  Google Scholar 

  30. Coelho BP, Giraldi-Guimarães A (2014) Effect of age and gender on recovery after stroke in rats treated with bone marrow mononuclear cells. Neurosci Res 88:67–73

    Article  PubMed  Google Scholar 

  31. Hansel G, Tonon AC, Guella FL, Pettenuzzo LF, Duarte T, Duarte MM, Oses JP, Achaval M et al (2015) Guanosine protects against cortical focal. Involvement of inflammatory response. Mol Neurobiol 52:1791–1803

    Article  CAS  PubMed  Google Scholar 

  32. Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc Am Pharm Assoc 46:208–209

    Article  CAS  PubMed  Google Scholar 

  33. Jones BJ, Roberts DJ (1968) The quantitative measurement of motor in co-ordination in naive mice using an accelerating rotarod. J Pharm Pharmacol 20:302–304

    Article  CAS  PubMed  Google Scholar 

  34. Hamm RJ, Pike BR, O’Dell DM, Lyeth BG, Jenkins LW (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11:187–196

    Article  CAS  PubMed  Google Scholar 

  35. Kuribara H, Higuchi Y, Tadokoro S (1977) Effects of central depressants on Rota-rod and traction performances in mice. Jpn J Pharmacol 27:117–126

    Article  CAS  PubMed  Google Scholar 

  36. Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK (2004) Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 28:365–378

    Article  PubMed  Google Scholar 

  37. Chauhan A, Sharma U, Jagannathan NR, Reeta KH, Gupta YK (2011) Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav Brain Res 225:603–609

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z, Tsai LK, Munasinghe J, Leng Y, Fessler EB, Chibane F, Leeds P, Chuang DM (2012) Chronic valproate treatment enhances post-ischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke 43:2430–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gulati P, Singh N (2014) Neuroprotective mechanism of ischemic preconditioning in mice: a possible relationship between protein kinase C and nitric oxide pathways. J Surg Res 189:174–183

    Article  CAS  PubMed  Google Scholar 

  40. Hattori Y, Kitamura A, Tsuji M, Nagatsuka K, Ihara M (2014) Motor and cognitive impairment in a mouse model of ischemic carotid artery disease. Neurosci Lett 581:1–6

    Article  CAS  PubMed  Google Scholar 

  41. Chen H, Burris M, Fajilan A, Spagnoli F, Tang J, Zhang JH (2011) Prolonged exposure to isoflurane ameliorates infarction severity in the rat pup model of neonatal hypoxia-ischemia. Transl Stroke Res 2:382–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ahmad A, Crupi R, Campolo M, Genovese T, Esposito E, Cuzzocrea S (2013) Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice. PLoS One 8:e57208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diederich K, Schmidt A, Strecker JK, Schäbitz WR, Schilling M, Minnerup J (2014) Cortical photothrombotic infarcts impair the recall of previously acquired memories but spare the formation of new ones. Stroke 45:614–618

    Article  PubMed  Google Scholar 

  44. Hall CS (1936) Emotional behavior in the rat: III. The relationship between emotionality and ambulatory activity. J Comp Psychol 22:345–352

    Article  Google Scholar 

  45. Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    Article  CAS  PubMed  Google Scholar 

  46. Grabovskaya SV, Salyha YT (2014) Do results of the open field test depend on the arena shape? Neurophysiology 46:376–380

    Article  Google Scholar 

  47. Yager JY, Wright S, Armstrong EA, Jahraus CM, Saucier DM (2006) The influence of aging on recovery following ischemic brain damage. Behav Brain Res 173:171–180

    Article  PubMed  Google Scholar 

  48. Tamura R, Nakada Y, Nishijo H, Miyake N, Ono T (2000) Ameliorative effects of tamolarizine on place learning impairment induced by transient forebrain ischemia in rats. Brain Res 853:81–92

    Article  CAS  PubMed  Google Scholar 

  49. Tejkalová H, Kaiser M, Klaschka J, Stastný F (2007) Does neonatal brain ischemia induce schizophrenia-like behavior in young adult rats? Physiol Res 56:815–823

    PubMed  Google Scholar 

  50. Delcour M, Olivier P, Chambon C, Pansiot J, Russier M, Liberge M, Xin D, Gestreau C et al (2012) Neuroanatomical, sensorimotor and cognitive deficits in adult rats with white matter injury following prenatal ischemia. Brain Pathol 22:1–16

    Article  PubMed  Google Scholar 

  51. Manwani B, Liu F, Xu Y, Persky R, Li J, McCullough LD (2011) Functional recovery in aging mice after experimental stroke. Brain Behav Immun 25:1689–1700

    Article  PubMed  PubMed Central  Google Scholar 

  52. Meyer OA, Tilson HA, Byrd WC, Riley MT (1979) A method for the routine assessment of fore- and hind limb grip strength of rats and mice. Neurobehav Toxicol:1233–1236

  53. Dunnett SB, Torres EM, Annett LE (1998) A lateralised grip strength test to evaluate unilateral nigrostriatal lesions in rats. Neurosci Lett 246:1–4

    Article  CAS  PubMed  Google Scholar 

  54. Jeyasingham RA, Baird AL, Meldrum A, Dunnett SB (2001) Differential effects of unilateral striatal and nigrostriatal lesions on grip strength, skilled paw reaching and drug-induced rotation in the rat. Brain Res Bull 55:541–548

    Article  CAS  PubMed  Google Scholar 

  55. Rosell A, Agin V, Rahman M, Morancho A, Ali C, Koistinaho J, Wang X, Vivien D et al (2013) Distal occlusion of the middle cerebral artery in mice: are we ready to assess long-term functional outcome? Transl Stroke Res 4:297–307

    Article  PubMed  Google Scholar 

  56. Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB (1991) The "staircase test": a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36:219–228

    Article  CAS  PubMed  Google Scholar 

  57. Baird AL, Meldrum A, Dunnett SB (2001) The staircase test of skilled reaching in mice. Brain Res Bull 54:243–250

    Article  CAS  PubMed  Google Scholar 

  58. Grabowski M, Brundin P, Johansson BB (1993) Paw-reaching, sensorimotor, and rotational behavior after brain infarction in rats. Stroke 24:889–895

    Article  CAS  PubMed  Google Scholar 

  59. Bouët V, Freret T, Toutain J, Divoux D, Boulouard M, Schumann-Bard P (2007) Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol 203:555–567

    Article  PubMed  Google Scholar 

  60. Kohzuki M, Tomimatsu T, Fukuda H, Kanagawa T, Kanzaki T, Shimoya K, Murata Y (2006) Long-term neuroprotective effects of carbon dioxide on neonatal rat hypoxic-ischemic brain injury: an experimental study of skilled motor tasks. Am J Obstet Gynecol 195:240–245

    Article  CAS  PubMed  Google Scholar 

  61. Yoshikawa G, Momiyama T, Oya S, Takai K, Tanaka J, Higashiyama S, Saito N, Kirino T et al (2010) Induction of striatal neurogenesis and generation of region-specific functional mature neurons after ischemia by growth factors. Laboratory investigation J Neurosurg 113:835–850

    PubMed  Google Scholar 

  62. Lake EM, Chaudhuri J, Thomason L, Janik R, Ganguly M, Brown M, McLaurin J, Corbett D et al (2015) The effects of delayed reduction of tonic inhibition of ischemic lesion and sensorimotor function. J Cereb Blood Flow Metab 35:1601–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang L, Schallert T, Zhang ZG, Jiang Q, Arniego P, Li Q, Lu M, Chopp M (2002) A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods 117:207–214

    Article  PubMed  Google Scholar 

  64. Lubjuhn J, Gastens A, von Wilpert G, Bargiotas P, Herrmann O, Murikinati S, Rabie T, Marti HH et al (2009) Functional testing in a mouse stroke model induced by occlusion of the distal middle cerebral artery. J Neurosci Methods 184:95–103

    Article  PubMed  Google Scholar 

  65. Li X, Blizzard KK, Zeng Z, DeVries AC, Hurn PD, McCullough LD (2004) Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp Neurol 187:94–104

    Article  PubMed  Google Scholar 

  66. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  67. McNamara RK, Skelton RW (1993) The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Res Brain Res Rev 18:33–49

    Article  CAS  PubMed  Google Scholar 

  68. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  69. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  70. Devan BD, Goad EH, Petri HL (1996) Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Neurobiol Learn Mem 66:305–323

    Article  CAS  PubMed  Google Scholar 

  71. Yonemori F, Yamaguchi T, Yamada H, Tamura A (1999) Spatial cognitive performance after chronic focal cerebral ischemia in rats. J Cereb Blood Flow Metab 19:483–494

    Article  CAS  PubMed  Google Scholar 

  72. Dahlqvist P, Rönnbäck A, Bergström SA, Söderström I, Olsson T (2004) Environmental enrichment reverses learning impairment in the Morris water maze after focal cerebral ischemia in rats. Eur J Neurosci 19:2288–2298

    Article  PubMed  Google Scholar 

  73. Wang JY, Shen J, Gao Q, Ye ZG, Yang SY, Liang HW, Bruce IC, Luo BY et al (2008) Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 39:983–990

    Article  PubMed  Google Scholar 

  74. Jarvik ME, Kopp R (1967) An improved one-trial passive avoidance learning situation. Psychol Rep 21:221–224

    Article  CAS  PubMed  Google Scholar 

  75. Borlongan CV, Cahill DW, Sanberg PR (1995) Locomotor and passive avoidance deficits following occlusion of the middle cerebral artery. Physiol Behav 58:909–917

    Article  CAS  PubMed  Google Scholar 

  76. Yonemori F, Yamada H, Yamaguchi T, Uemura A, Tamura A (1996) Spatial memory disturbance after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 16:973–980

    Article  CAS  PubMed  Google Scholar 

  77. Shimada H, Hamakawa M, Ishida A, Tamakoshi K, Nakashima H, Ishida K (2013) Low-speed treadmill running exercise improves memory function after transient middle cerebral artery occlusion in rats. Behav Brain Res 243:21–27

    Article  PubMed  Google Scholar 

  78. Zare Mehrjerdi F, Aboutaleb N, Habibey R, Ajami M, Soleimani M, Arabian M, Niknazar S, Hossein Davoodi S et al (2013) Increased phosphorylation of mTOR is involved in remote ischemic preconditioning of hippocampus in mice. Brain Res 1526:94–101

    Article  CAS  PubMed  Google Scholar 

  79. Jing XH, Chen SL, Shi H, Cai H, Jin ZG (2008) Electroaccupuncture restores learning and memory impairment induced by both diabetes mellitus and cerebral ischemia in rats. Neurosci Lett 443:193–198

    Article  CAS  PubMed  Google Scholar 

  80. Anthony EW, Nevins ME (1993) Anxiolytic-like effects of N-methyl-D-aspartate-associated glycine receptor ligands in the rat potentiated startle test. Eur J Pharmacol 250:317–324

    Article  CAS  PubMed  Google Scholar 

  81. Johnson LR, McGuire J, Lazarus R, Palmer AA (2012) Pavlovian fear memory circuits and phenotype models of PTSD. Neuropharmacology 62:638–646

    Article  CAS  PubMed  Google Scholar 

  82. Zovkic IB, Sweatt JD (2013) Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology 38:77–93

    Article  CAS  PubMed  Google Scholar 

  83. Cohan CH, Neumann JT, Dave KR, Alekseyenko A, Binkert M, Stransky K, Lin HW, Barnes CA et al (2015) Effect of cardiac arrest on cognitive impairment and hippocampal plasticity in middle-aged rats. PLoS One 10:e0124918

    Article  PubMed  PubMed Central  Google Scholar 

  84. Spencer SJ, Galic MA, Tsutsui M, Pittman QJ, Mouihate A (2008) Effects of global cerebral ischemia in the pregnant rat. Stroke 39:975–982

    Article  PubMed  PubMed Central  Google Scholar 

  85. Järlestedt K, Atkins AL, Hagberg H, Pekna M, Mallard C (2011) Trace fear conditioning detects hypoxic-ischemic brain injury in neonatal mice. Dev Neurosci 33:222–230

    Article  PubMed  Google Scholar 

  86. Chin Y, Kishi M, Sekino M, Nakajo F, Abe Y, Terazono Y, Hiroyuki O, Kato F et al (2013) Involvement of glial P2Y1 receptors in cognitive deficit after focal cerebral stroke in a rodent model. J Neuroinflammation 10:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH, Welsh MJ (2003) Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23:5496–5502

    CAS  PubMed  Google Scholar 

  88. Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 17:245–255

    Article  Google Scholar 

  89. Kutsuna N, Yamashita A, Eriguchi T (2014) Acute stress exposure preceding transient global brain ischemia exacerbates the decrease in cortical remodeling potential in the rat retrosplenial cortex. Neurosci Res 78:65–71

    Article  CAS  PubMed  Google Scholar 

  90. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  91. Verma R, Friedler BD, Harris NM, McCullough LD (2014) Pair housing reverses post-stroke depressive behavior in mice. Behav Brain Res 269:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  92. Truong DT, Venna VR, McCullough LD, Fitch RH (2012) Deficits in auditory, cognitive, and motor processing following reversible middle cerebral artery occlusion in mice. Exp Neurol 238:114–121

    Article  PubMed  Google Scholar 

  93. Tsai YC, Huang SJ, Chang CL (1994) The influence of focal ischemic brain injury on tail-flick latency in the rat. Acta Anaesthesiol Sin 32:115–120

    CAS  PubMed  Google Scholar 

  94. Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53:597–652

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajanikant G. Krishnamurthy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nampoothiri, S.S., Potluri, T., Subramanian, H. et al. Rodent Gymnastics: Neurobehavioral Assays in Ischemic Stroke. Mol Neurobiol 54, 6750–6761 (2017). https://doi.org/10.1007/s12035-016-0195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0195-6

Keywords

Navigation