Skip to main content

Advertisement

Log in

Synthesis and Biological Evaluation of Novel Multi-target-Directed Benzazepines Against Excitotoxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aβ1–42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aβ also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aβ1–42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aβ1–42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aβ1–42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aβ1–42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3β. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164(3880):719–721

    Article  CAS  PubMed  Google Scholar 

  2. Petroff OA (2002) GABA and glutamate in the human brain. Neuroscientist 8(6):562–573

    Article  CAS  PubMed  Google Scholar 

  3. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  4. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30(4):379–387. doi:10.1038/aps.2009.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81(3):163–221

    Article  CAS  PubMed  Google Scholar 

  6. Hardingham GE (2009) Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 37(Pt 6):1147–1160. doi:10.1042/BST0371147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gonzalez J, Jurado-Coronel JC, Avila MF, Sabogal A, Capani F, Barreto GE (2015) NMDARs in neurological diseases: a potential therapeutic target. The International journal of neuroscience 125(5):315–327. doi:10.3109/00207454.2014.940941

    Article  CAS  PubMed  Google Scholar 

  8. Carrillo-Mora P, Luna R, Colin-Barenque L (2014) Amyloid beta: multiple mechanisms of toxicity and only some protective effects? Oxidative Med Cell Longev 2014:795375. doi:10.1155/2014/795375

    Article  Google Scholar 

  9. Melnikova I (2007) Therapies for Alzheimer’s disease. Nat Rev Drug Discov 6(5):341–342. doi:10.1038/nrd2314

    Article  CAS  PubMed  Google Scholar 

  10. Robinson DM, Keating GM (2006) Memantine: a review of its use in Alzheimer’s disease. Drugs 66(11):1515–1534

    Article  CAS  PubMed  Google Scholar 

  11. Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348(14):1333–1341

    Article  CAS  PubMed  Google Scholar 

  12. Kelly BL, Ferreira A (2007) Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience 147(1):60–70. doi:10.1016/j.neuroscience.2007.03.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Danysz W, Parsons CG (2012) Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine—searching for the connections. Br J Pharmacol 167(2):324–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song MS, Rauw G, Baker GB, Kar S (2008) Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation. Eur J Neurosci 28(10):1989–2002. doi:10.1111/j.1460-9568.2008.06498.x

    Article  CAS  PubMed  Google Scholar 

  15. Nicholls DG (2004) Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med 4(2):149–177

    Article  CAS  PubMed  Google Scholar 

  16. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74. doi:10.2174/157015909787602823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Girouard H, Wang G, Gallo EF, Anrather J, Zhou P, Pickel VM, Iadecola C (2009) NMDA receptor activation increases free radical production through nitric oxide and NOX2. The Journal of neuroscience : the official journal of the Society for Neuroscience 29(8):2545–2552. doi:10.1523/JNEUROSCI.0133-09.2009

    Article  CAS  Google Scholar 

  18. Roth KA (2001) Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol 60(9):829–838

    Article  CAS  PubMed  Google Scholar 

  19. Butterfield DA (2002) Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review Free radical research 36(12):1307–1313

    Article  CAS  PubMed  Google Scholar 

  20. Butterfield DA, Reed T, Newman SF, Sultana R (2007) Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43(5):658–677. doi:10.1016/j.freeradbiomed.2007.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blurton-Jones M, Laferla FM (2006) Pathways by which Abeta facilitates tau pathology. Curr Alzheimer Res 3(5):437–448

    Article  CAS  PubMed  Google Scholar 

  22. Behl C, Davis J, Cole GM, Schubert D (1992) Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem Biophys Res Commun 186(2):944–950

    Article  CAS  PubMed  Google Scholar 

  23. Wirt U, Schepmann D, Wünsch B (2007) Asymmetric synthesis of 1-substituted tetrahydro-3-benzazepines as NMDA receptor antagonists. Eur J Org Chem 2007(3):462–475. doi:10.1002/ejoc.200600746

    Article  Google Scholar 

  24. Tewes B, Frehland B, Schepmann D, Schmidtke K-U, Winckler T, Wünsch B (2010) Conformationally constrained NR2B selective NMDA receptor antagonists derived from ifenprodil: synthesis and biological evaluation of tetrahydro-3-benzazepine-1,7-diols. Bioorg Med Chem 18(22):8005–8015. doi:10.1016/j.bmc.2010.09.026

    Article  CAS  PubMed  Google Scholar 

  25. Koenig TM, Mitchell, D, Nissen JS (2002) Lactam compound.WO2002040508 A2002040502

  26. Solecka J, Guspiel A, Postek M, Ziemska J, Kawecki R, Leczycka K, Osior A, Pietrzak B et al (2014) New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity. Molecules 19(10):15866–15890. doi:10.3390/molecules191015866

    Article  PubMed  Google Scholar 

  27. Nunez-Figueredo Y, Pardo-Andreu GL, Ramirez-Sanchez J, Delgado-Hernandez R, Ochoa-Rodriguez E, Verdecia-Reyes Y, Naal Z, Muller AP et al (2014) Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: mitoprotection against Ca(2)(+)-induced mitochondrial impairment. Brain Res Bull 109:68–76. doi:10.1016/j.brainresbull.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  28. Nair MDMP (1967) Preparation of 2,3,4,5-tetrahydro-3,1H-benzazepin-2-one. Indian J Chem 5(4):169–170

    CAS  Google Scholar 

  29. Vellonen KS, Honkakoski P, Urtti A (2004) Substrates and inhibitors of efflux proteins interfere with the MTT assay in cells and may lead to underestimation of drug toxicity. Eur J Pharm Sci 23(2):181–188. doi:10.1016/j.ejps.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  30. Munoz-Ruiz P, Rubio L, Garcia-Palomero E, Dorronsoro I, del Monte-Millan M, Valenzuela R, Usan P, de Austria C et al (2005) Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J Med Chem 48(23):7223–7233. doi:10.1021/jm0503289

    Article  CAS  PubMed  Google Scholar 

  31. Kwon YE, Park JY, No KT, Shin JH, Lee SK, Eun JS, Yang JH, Shin TY et al (2007) Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer’s disease therapeutics. Bioorg Med Chem 15(20):6596–6607. doi:10.1016/j.bmc.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  32. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Anal Biochem 266(1):66–76. doi:10.1006/abio.1998.2933

    Article  CAS  PubMed  Google Scholar 

  33. Kang IJ, Jeon YE, Yin XF, Nam JS, You SG, Hong MS, Jang BG, Kim MJ (2011) Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid, and reduces beta-amyloid mediated neuronal death. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association 49(9):2252–2259. doi:10.1016/j.fct.2011.06.023

    Article  CAS  Google Scholar 

  34. Sinha A, Tamboli RS, Seth B, Kanhed AM, Tiwari SK, Agarwal S, Nair S, Giridhar R et al (2015) Neuroprotective role of novel triazine derivatives by activating Wnt/beta catenin signaling pathway in rodent models of Alzheimer’s disease. Mol Neurobiol 52(1):638–652. doi:10.1007/s12035-014-8899-y

    Article  CAS  PubMed  Google Scholar 

  35. Yao M, Nguyen TV, Pike CJ (2005) Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. The Journal of neuroscience : the official journal of the Society for Neuroscience 25(5):1149–1158. doi:10.1523/JNEUROSCI.4736-04.2005

    Article  CAS  Google Scholar 

  36. Muirhead KE, Borger E, Aitken L, Conway SJ, Gunn-Moore FJ (2010) The consequences of mitochondrial amyloid beta-peptide in Alzheimer’s disease. The Biochemical journal 426(3):255–270. doi:10.1042/BJ20091941

    Article  CAS  PubMed  Google Scholar 

  37. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415. doi:10.1038/nprot.2006.356

    Article  CAS  PubMed  Google Scholar 

  38. Zha YY, Yang B, Tang ML, Guo QC, Chen JT, Wen LP, Wang M (2012) Concentration-dependent effects of fullerenol on cultured hippocampal neuron viability. Int J Nanomedicine 7:3099–3109. doi:10.2147/IJN.S30934

    PubMed  PubMed Central  Google Scholar 

  39. Liu D, Zhang H, Gu W, Liu Y, Zhang M (2013) Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons. PLoS One 8(11):e79399. doi:10.1371/journal.pone.0079399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou S, Yang Y, Gu X, Ding F (2008) Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci Lett 444(3):270–274. doi:10.1016/j.neulet.2008.08.040

    Article  CAS  PubMed  Google Scholar 

  41. Brecht S, Gelderblom M, Srinivasan A, Mielke K, Dityateva G, Herdegen T (2001) Caspase-3 activation and DNA fragmentation in primary hippocampal neurons following glutamate excitotoxicity. Brain Res Mol Brain Res 94(1–2):25–34

    Article  CAS  PubMed  Google Scholar 

  42. Troy CM, Friedman JE, Friedman WJ (2002) Mechanisms of p75-mediated death of hippocampal neurons. Role of caspases. J Biol Chem 277(37):34295–34302. doi:10.1074/jbc.M205167200

    Article  CAS  PubMed  Google Scholar 

  43. Di L, Kerns EH, Fan K, McConnell OJ, Carter GT (2003) High throughput artificial membrane permeability assay for blood–brain barrier. Eur J Med Chem 38(3):223–232. doi:10.1016/S0223-5234(03)00012-6

    Article  CAS  PubMed  Google Scholar 

  44. Lu C, Guo Y, Yan J, Luo Z, Luo HB, Yan M, Huang L, Li X (2013) Design, synthesis, and evaluation of multitarget-directed resveratrol derivatives for the treatment of Alzheimer’s disease. J Med Chem 56(14):5843–5859. doi:10.1021/jm400567s

    Article  CAS  PubMed  Google Scholar 

  45. Tucci P, Mhillaj E, Morgese MG, Colaianna M, Zotti M, Schiavone S, Cicerale M, Trezza V et al (2014) Memantine prevents memory consolidation failure induced by soluble beta amyloid in rats. Front Behav Neurosci 8:332. doi:10.3389/fnbeh.2014.00332

    Article  PubMed  PubMed Central  Google Scholar 

  46. Colaianna M, Tucci P, Zotti M, Morgese MG, Schiavone S, Govoni S, Cuomo V, Trabace L (2010) Soluble beta amyloid(1-42): a critical player in producing behavioural and biochemical changes evoking depressive-related state? Br J Pharmacol 159(8):1704–1715. doi:10.1111/j.1476-5381.2010.00669.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90

    Article  PubMed  Google Scholar 

  48. Yan JJ, Cho JY, Kim HS, Kim KL, Jung JS, Huh SO, Suh HW, Kim YH et al (2001) Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133(1):89–96. doi:10.1038/sj.bjp.0704047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramesh T, Kim SW, Sung JH, Hwang SY, Sohn SH, Yoo SK, Kim SK (2012) Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats. Exp Gerontol 47(1):77–84. doi:10.1016/j.exger.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  50. Reinhoud NJ, Brouwer HJ, van Heerwaarden LM, Korte-Bouws GA (2013) Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection. ACS Chem Neurosci 4(5):888–894. doi:10.1021/cn400044s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Glide (2009) version 5.5, Schrödinger, LLC. New York, NY

  52. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M et al (2010) AMBER 11. University of California, San Francisco

    Google Scholar 

  53. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. doi:10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  54. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095. doi:10.1021/ct400341p

    Article  CAS  PubMed  Google Scholar 

  55. Guzikowski AP, Cai SX, Espitia SA, Hawkinson JE, Huettner JE, Nogales DF, Tran M, Woodward RM et al (1996) Analogs of 3-hydroxy-1H-1-benzazepine-2,5-dione: structure-activity relationship at N-methyl-D-aspartate receptor glycine sites. J Med Chem 39(23):4643–4653. doi:10.1021/jm960479z

    Article  CAS  PubMed  Google Scholar 

  56. Orito K, Matsuzaki T (1980) Benzolactams—I. Tetrahedron 36(8):1017–1021. doi:10.1016/0040-4020(80)80055-X

    Article  CAS  Google Scholar 

  57. Verma A, Prajapati N, Salecha S, Giridhar R, Yadav MR (2013) Microwave assisted palladium catalyzed intermolecular α-arylation of copper-amide enolate of benzazepine. Tetrahedron Lett 54(15):2029–2032

    Article  CAS  Google Scholar 

  58. Saintruf G, Bourgead J (1968) Phthalonimides (1,3,4-trioxo-1,2,3,4-tetrahydroisoquinolines) of potential biological interest. J Heterocycl Chem 5(4):m545–m547

    Article  Google Scholar 

  59. Cho J, Park C, Lee Y, Kim S, Bose S, Choi M, Kumar AS, Jung JK et al (2015) Neuroprotective and antioxidant effects of novel benzofuran-2-carboxamide derivatives. Biomol Ther 23(3):275–282. doi:10.4062/biomolther.2015.030

    Article  CAS  Google Scholar 

  60. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438(7065):185–192. doi:10.1038/nature04089

    Article  CAS  PubMed  Google Scholar 

  61. Monaghan DT, Jane DE (2009) Pharmacology of NMDA receptors. In: Van Dongen AM (ed) Biology of the NMDA receptor. Frontiers in Neuroscience Chapter 12.

  62. Harkany T, Abraham I, Timmerman W, Laskay G, Toth B, Sasvari M, Konya C, Sebens JB et al (2000) Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci 12(8):2735–2745

    Article  CAS  PubMed  Google Scholar 

  63. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698–712. doi:10.1038/nrd3505

    Article  CAS  PubMed  Google Scholar 

  64. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  CAS  PubMed  Google Scholar 

  65. Alberdi E, Sanchez-Gomez MV, Cavaliere F, Perez-Samartin A, Zugaza JL, Trullas R, Domercq M, Matute C (2010) Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47(3):264–272. doi:10.1016/j.ceca.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  66. Bieschke J, Herbst M, Wiglenda T, Friedrich RP, Boeddrich A, Schiele F, Kleckers D, Lopez del Amo JM et al (2012) Small-molecule conversion of toxic oligomers to nontoxic beta-sheet-rich amyloid fibrils. Nat Chem Biol 8(1):93–101. doi:10.1038/nchembio.719

    Article  CAS  Google Scholar 

  67. Greicius MD, Krasnow B, Boyett-Anderson JM, Eliez S, Schatzberg AF, Reiss AL, Menon V (2003) Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus 13(1):164–174. doi:10.1002/hipo.10064

    Article  PubMed  Google Scholar 

  68. Hitti FL, Siegelbaum SA (2014) The hippocampal CA2 region is essential for social memory. Nature 508(7494):88–92. doi:10.1038/nature13028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237–248. doi:10.1038/nrd3050

    Article  CAS  PubMed  Google Scholar 

  70. Dobarro M, Gerenu G, Ramirez MJ (2013) Propranolol reduces cognitive deficits, amyloid and tau pathology in Alzheimer’s transgenic mice. The International Journal of Neuropsychopharmacology/Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum 16(10):2245–2257. doi:10.1017/S1461145713000631

    Article  CAS  Google Scholar 

  71. Brion JP, Anderton BH, Authelet M, Dayanandan R, Leroy K, Lovestone S, Octave JN, Pradier L, et al (2001) Neurofibrillary tangles and tau phosphorylation. Biochemical Society symposium (67):81–88

  72. Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo E, Avila J (2005) Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimer Res 2(1):3–18

    Article  CAS  PubMed  Google Scholar 

  73. Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25(1):59–68. doi:10.1111/j.1460-9568.2006.05226.x

    Article  PubMed  PubMed Central  Google Scholar 

  74. Watkins JC (1981) Pharmacology of excitatory amino acid transmitters. Adv Biochem Psychopharmacol 29:205–212

    CAS  PubMed  Google Scholar 

  75. Flores-Soto ME, Chaparro-Huerta V, Escoto-Delgadillo M, Vazquez-Valls E, Gonzalez-Castaneda RE, Beas-Zarate C (2012) Structure and function of NMDA-type glutamate receptor subunits. Neurologia 27(5):301–310. doi:10.1016/j.nrl.2011.10.014

    Article  CAS  PubMed  Google Scholar 

  76. Mayer ML (2005) Glutamate receptor ion channels. Curr Opin Neurobiol 15(3):282–288. doi:10.1016/j.conb.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  77. Köhr G (2006) NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 326(2):439–446

    Article  PubMed  Google Scholar 

  78. Barger SW, Basile AS (2001) Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J Neurochem 76(3):846–854

    Article  CAS  PubMed  Google Scholar 

  79. Wenk GL, Baker LM, Hauss-Wegrzyniak B, Danysz W, Stoehr JD (1998) Novel glycineB antagonists show neuroprotective activity in vivo. Amino Acids 14(1–3):223–226

    Article  CAS  PubMed  Google Scholar 

  80. Nagata R, Tanno N, Kodo T, Ae N, Yamaguchi H, Nishimura T, Antoku F, Tatsuno T et al (1994) Tricyclic Quinoxalinediones: 5,6-dihydro-1H-pyrrolo[1,2,3-de]quinoxaline-2,3-diones and 6,7-dihydro-1H,5H-pyrido[1,2,3-de]quinoxaline-2,3-diones as potent antagonists for the glycine binding site of the NMDA receptor. J Med Chem 37(23):3956–3968. doi:10.1021/jm00049a015

    Article  CAS  PubMed  Google Scholar 

  81. Chapdelaine MJ, McLaren CD (1993) Therapeutic benzazarine compounds. US Patent 5 (254,683)

  82. Kemp JA, Leeson PD (1993) The glycine site of the NMDA receptor—five years on. Trends Pharmacol Sci 14(1):20–25

    Article  CAS  PubMed  Google Scholar 

  83. Kulagowski JJ, Baker R, Curtis NR, Leeson PD, Mawer IM, Moseley AM, Ridgill MP, Rowley M et al (1994) 3′-(Arylmethyl)- and 3′-(aryloxy)-3-phenyl-4-hydroxyquinolin-2(1H)-ones: orally active antagonists of the glycine site on the NMDA receptor. J Med Chem 37(10):1402–1405

    Article  CAS  PubMed  Google Scholar 

  84. Keana JF, Kher SM, Cai SX, Dinsmore CM, Glenn AG, Guastella J, Huang JC, Ilyin V et al (1995) Synthesis and structure-activity relationships of substituted 1,4-dihydroquinoxaline-2,3-diones: antagonists of N-methyl-D-aspartate (NMDA) receptor glycine sites and non-NMDA glutamate receptors. J Med Chem 38(22):4367–4379

    Article  CAS  PubMed  Google Scholar 

  85. Swartz KJ, Koroshetz WJ, Rees AH, Huettner JE (1992) Competitive antagonism of glutamate receptor channels by substituted benzazepines in cultured cortical neurons. Mol Pharmacol 41(6):1130–1141

    CAS  PubMed  Google Scholar 

  86. Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, Quack G (2002) Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res 958(1):210–221

    Article  CAS  PubMed  Google Scholar 

  87. Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 5(1):101–106. doi:10.1038/4789

    Article  CAS  PubMed  Google Scholar 

  88. Moechars D, Dewachter I, Lorent K, Reverse D, Baekelandt V, Naidu A, Tesseur I, Spittaels K et al (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274(10):6483–6492

    Article  CAS  PubMed  Google Scholar 

  89. Lee DH, Park T, Kim HW (2006) Induction of apoptosis by disturbing mitochondrial-membrane potential and cleaving PARP in Jurkat T cells through treatment with acetoxyscirpenol mycotoxins. Biol Pharm Bull 29(4):648–654

    Article  CAS  PubMed  Google Scholar 

  90. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM (1998) Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 273(50):33533–33539

    Article  CAS  PubMed  Google Scholar 

  91. Chaitanya GV, Steven AJ, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8(1):31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Strosznajder JB, Jesko H, Strosznajder RP (2000) Effect of amyloid beta peptide on poly(ADP-ribose) polymerase activity in adult and aged rat hippocampus. Acta Biochim Pol 47(3):847–854

    CAS  PubMed  Google Scholar 

  93. Adamczyk A, Jesko H, Strosznajder RP (2005) Alzheimer’s disease related peptides affected cholinergic receptor mediated poly(ADP-ribose) polymerase activity in the hippocampus. Folia Neuropathologica/Association of Polish Neuropathologists and Medical Research Centre, Polish Academy of Sciences 43(3):139–142

    CAS  Google Scholar 

  94. Sairanen T, Szepesi R, Karjalainen-Lindsberg ML, Saksi J, Paetau A, Lindsberg PJ (2009) Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol 118(4):541–552. doi:10.1007/s00401-009-0559-3

    Article  CAS  PubMed  Google Scholar 

  95. Phiel CJ, Wilson CA, Lee VM, Klein PS (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423(6938):435–439. doi:10.1038/nature01640

    Article  CAS  PubMed  Google Scholar 

  96. Ma QL, Lim GP, Harris-White ME, Yang F, Ambegaokar SS, Ubeda OJ, Glabe CG, Teter B et al (2006) Antibodies against beta-amyloid reduce Abeta oligomers, glycogen synthase kinase-3beta activation and tau phosphorylation in vivo and in vitro. J Neurosci Res 83(3):374–384. doi:10.1002/jnr.20734

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding given by University Grants Commission, New Delhi, India, to Prof. Rajani Giridhar in the form of Major Research Project (F. no. 41-716/2012-SR). Authors also acknowledge Dr. Vikram Sarabhai Research Center, The Maharaja Sayajirao University of Baroda, Vadodara, India for providing analytical facilities.

Author Contributions

JM designed the study; MRY, RG and NP designed, synthesised and characterised the compounds; NP performed the synthesis of compounds; JM performed all the in vitro and in vivo biological experiments and collected data; JM and NP wrote the manuscript; AMK performed the molecular docking studies; AT, ZSP and JM performed in vitro experiments on primary rat hippocampal neuronal culture and Western blot analysis under the supervision of PPP; MRY, RG, KP and PPP conceived, designed and approved the final version of the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mange Ram Yadav.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest pertaining to this manuscript.

Electronic Supplementary Material

ESM 1

(DOCX 2656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machhi, J., Prajapati, N., Tripathi, A. et al. Synthesis and Biological Evaluation of Novel Multi-target-Directed Benzazepines Against Excitotoxicity. Mol Neurobiol 54, 6697–6722 (2017). https://doi.org/10.1007/s12035-016-0184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0184-9

Keywords

Navigation