Skip to main content
Log in

MicroRNA-Mediated Reprogramming of Somatic Cells into Neural Stem Cells or Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cellular reprogramming is a promising strategy to generate neural stem cells (NSCs) or desired subtype-specific neurons for cell-based therapeutic intervention. By far, the intricate cell event like reprogramming of non-neural cells to desired cell types can be achieved by forced expression of lineage-related transcription factors (TFs), nuclear transfer, a defined set of factors, and via non-coding microRNAs (miRNAs), as well as other precisely defined conditions. In addition, scientists have been trying to develop better approaches for reprogramming, either by using distinct combinations of a set of small molecules and certain TFs or delivery of appropriate small molecules and miRNAs. The miRNA-mediated approach is fascinating because of its potential to rapidly generate a variety of therapeutically desired cell types from other cell lineages. Recent studies have made great progress in miRNA-mediated neural reprogramming of somatic cells to various specific neuronal subtypes with more efficiency even though the exact mechanisms remain to be further explored. Based on key roles of miRNAs in neural reprogramming across differentiated cell lineages, it is of vital interest to summarize the recent knowledge regarding the instructive role of miRNAs in direct conversion of somatic cells into neural lineages. This precise review mainly focuses on recent discoveries of miRNAs functions in initiating cell reprogramming and fate specification of the neuronal subtype. Moreover, we discuss most recent findings about some miRNAs’ activity in regulating various developmental stages of neurons, which is helpful for understanding the event network between miRNAs and their targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  2. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh SK (2007) miRNAs: from neurogeneration to neurodegeneration. Pharmacogenomics 8(8):971–978

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Jin P (2010) Roles of small regulatory RNAs in determining neuronal identity. Nat Rev Neurosci 11(5):329–338

    Article  CAS  PubMed  Google Scholar 

  5. Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY, Young WL, Ivey KN et al (2010) MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 6(4):323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  7. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773

    Article  CAS  PubMed  Google Scholar 

  8. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  10. Almeida R, Allshire RC (2005) RNA silencing and genome regulation. Trends Cell Biol 15(5):251–258

    Article  CAS  PubMed  Google Scholar 

  11. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P et al (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15(3):259–267

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  14. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17(3):183–193

    Article  CAS  PubMed  Google Scholar 

  16. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K et al (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108(19):7838–7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han DW, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo MJ, Zaehres H, Wu G et al (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10(4):465–472

    Article  CAS  PubMed  Google Scholar 

  18. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR et al (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zou Q, Yan Q, Zhong J, Wang K, Sun H, Yi X, Lai L (2014) Direct conversion of human fibroblasts into neuronal restricted progenitors. J Biol Chem 289(8):5250–5260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Niu W, Zang T, Smith DK, Vue TY, Zou Y, Bachoo R, Johnson JE, Zhang CL (2015) SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports 4(5):780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G (2014) Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 15(4):497–506

    Article  CAS  PubMed  Google Scholar 

  22. Nakajima-Koyama M, Lee J, Ohta S, Yamamoto T, Nishida E (2015) Induction of pluripotency in astrocytes through a neural stem cell-like state. J Biol Chem 290(52):31173–31188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim SM, Flaßkamp H, Hermann A, Araúzo-Bravo MJ, Lee SC, Lee SH, Seo EH, Lee SH et al (2014) Direct conversion of mouse fibroblasts into induced neural stem cells. Nat Protoc 9(4):871–881

    Article  CAS  PubMed  Google Scholar 

  24. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17(8):991–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J21(17):4663–4670

    Article  Google Scholar 

  26. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  PubMed  Google Scholar 

  27. Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24(1):138–148

    Article  CAS  PubMed  Google Scholar 

  28. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7(7):719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by exportin 5. Nucleic Acids Res 32(16):4776–4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo L, Lu Z (2010) The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS One 5(6):e11387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93(11):1897–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meza-Sosa KF, Pedraza-Alva G, Pérez-Martínez L (2014) microRNAs: key triggers of neuronal cell fate. Front Cell Neurosci 8:175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Razak SR, Ueno K, Takayama N, Nariai N, Nagasaki M, Saito R, Koso H, Lai CY et al (2013) Profiling of microRNA in human and mouse ES and iPS cells reveals overlapping but distinct microRNA expression patterns. PLoS One 8(9):e73532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9(3):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC et al (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5(5):491–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li K, Zhu S, Russ HA, Xu S, Xu T, Zhang Y, Ma T, Hebrok M et al (2014) Small molecules facilitate the reprogramming of mouse fibroblasts into pancreatic lineages. Cell Stem Cell 14(2):228–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan X, Wan H, Zhao X, Zhu S, Zhou Q, Ding S (2011) Brief report: combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells 29(3):549–553

    Article  CAS  PubMed  Google Scholar 

  41. Wang G, Guo X, Hong W, Liu Q, Wei T, Lu C, Gao L, Ye D et al (2013) Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc Natl Acad Sci U S A 110(8):2858–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lüningschrör P, Hauser S, Kaltschmidt B, Kaltschmidt C (2013) MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochim Biophys Acta 1833(8):1894–1903

    Article  PubMed  CAS  Google Scholar 

  43. Li Z, Yang CS, Nakashima K, Rana TM (2011) Small RNA-mediated regulation of iPS cell generation. EMBO J 30(5):823–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK (2008) Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 28(20):6426–6438

    Article  PubMed  CAS  Google Scholar 

  45. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8(6):633–638

    Article  CAS  PubMed  Google Scholar 

  47. Kim BM, Thier MC, Oh S, Sherwood R, Kanellopoulou C, Edenhofer F, Choi MY (2012) MicroRNAs are indispensable for reprogramming mouse embryonic fibroblasts into induced stem cell-like cells. PLoS One 7(6):e39239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin SL, Chang DC, Lin CH, Ying SY, Leu D, DT W (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 39(3):1054–1065

    Article  CAS  PubMed  Google Scholar 

  49. Sandmaier SE, Telugu BP (2015) MicroRNA-mediated reprogramming of somatic cells into induced pluripotent stem cells. Methods Mol Biol 1330:29–36

    Article  PubMed  Google Scholar 

  50. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25(3):473–481

    Article  CAS  PubMed  Google Scholar 

  51. Bar-Nur O, Brumbaugh J, Verheul C, Apostolou E, Pruteanu-Malinici I, Walsh RM, Ramaswamy S, Hochedlinger K (2014) Small molecules facilitate rapid and synchronous iPSC generation. Nat Methods 11(11):1170–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  53. Carroll AP, Goodall GJ, Liu B (2014) Understanding principles of miRNA target recognition and function through integrated biological and bioinformatics approaches. Wiley Interdiscip Rev RNA 5(3):361–379

    Article  CAS  PubMed  Google Scholar 

  54. Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY et al (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 13(11):1353–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Unternaehrer JJ, Zhao R, Kim K, Cesana M, Powers JT, Ratanasirintrawoot S, Onder T, Shibue T et al (2014) The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Reports 3(5):691–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22(3):165–173

    Article  CAS  PubMed  Google Scholar 

  58. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014:970607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9(2):113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476(7359):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li MA, He L (2012) microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays 34(8):670–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wang T, Shi SB, Sha HY (2013) MicroRNAs in regulation of pluripotency and somatic cell reprogramming: small molecule with big impact. RNA Biol 10(8):1255–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou C, Gu H, Fan R, Wang B, Lou J (2015) MicroRNA 302/367 cluster effectively facilitates direct reprogramming from human fibroblasts into functional neurons. Stem Cells Dev 24(23):2746–2755

    Article  CAS  PubMed  Google Scholar 

  64. Kuo CH, Ying SY (2012) Advances in microRNA-mediated reprogramming technology. Stem Cells Int 2012:823709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E et al (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461(7262):415–418

    Article  CAS  PubMed  Google Scholar 

  66. Wang T, Warren ST, Jin P (2013) Toward pluripotency by reprogramming: mechanisms and application. Protein Cell 4(11):820–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gruber AJ, Zavolan M (2013) Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenomics 5(6):671–683

    Article  CAS  PubMed  Google Scholar 

  68. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293(5532):1089–1093

    Article  CAS  PubMed  Google Scholar 

  69. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17(10):1169–1174

    Article  CAS  PubMed  Google Scholar 

  70. Majoros WH, Ohler U (2007) Spatial preferences of microRNA targets in 3′ untranslated regions. BMC Genomics 8:152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH, Dhanasekaran SM, Chinnaiyan AM et al (2009) New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res 19(7):1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brümmer A, Hausser J (2014) MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. BioEssays 36(6):617–626

    Article  PubMed  CAS  Google Scholar 

  73. Rosa A, Brivanlou AH (2011) A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO J 30(2):237–248

    Article  CAS  PubMed  Google Scholar 

  74. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134(3):521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsialikas J, Romer-Seibert J (2015) LIN28: roles and regulation in development and beyond. Development 142(14):2397–2404

    Article  CAS  PubMed  Google Scholar 

  76. Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P (2011) Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147(5):1080–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186

    Article  CAS  PubMed  Google Scholar 

  78. Esteban MA, Pei D (2012) Vitamin C improves the quality of somatic cell reprogramming. Nat Genet 44(4):366–367

    Article  CAS  PubMed  Google Scholar 

  79. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Meza-Sosa KF, Valle-García D, Pedraza-Alva G, Pérez-Martínez L (2012) Role of microRNAs in central nervous system development and pathology. J Neurosci Res 90(1):1–12

    Article  CAS  PubMed  Google Scholar 

  81. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    Article  CAS  PubMed  Google Scholar 

  82. Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21(6):1469–1477

    Article  PubMed  Google Scholar 

  83. Akerblom M, Jakobsson J (2013) MicroRNAs as neuronal fate determinants. Neuroscientist 20(3):235–242

    Article  PubMed  CAS  Google Scholar 

  84. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yu JY, Chung KH, Deo M, Thompson RC, Turner DL (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314(14):2618–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maiorano NA, Mallamaci A (2009) Promotion of embryonic cortico-cerebral neuronogenesis by miR-124. Neural Dev 4:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Cao X, Pfaff SL, Gage FH (2007) A functional study of miR-124 in the developing neural tube. Genes Dev 21(5):531–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu J, Xie X (2006) Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7(9):R85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Lunyak VV, Rosenfeld MG (2005) No rest for REST: REST/NRSF regulation of neurogenesis. Cell 121(4):499–501

    Article  CAS  PubMed  Google Scholar 

  92. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103(7):2422–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L et al (2011) MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through notch signaling pathway. PLoS One 6(8):e23461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Farrell BC, Power EM, Mc Dermott KW (2011) Developmentally regulated expression of Sox9 and microRNAs 124, 128 and 23 in neuroepithelial stem cells in the developing spinal cord. Int J Dev Neurosci 29(1):31–36

    Article  CAS  PubMed  Google Scholar 

  96. Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B (2007) Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 39(12):2195–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Poché RA, Furuta Y, Chaboissier MC, Schedl A, Behringer RR (2008) Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller glial cell development. J Comp Neurol 510(3):237–250

    Article  PubMed  PubMed Central  Google Scholar 

  98. Thomsen MK, Francis JC, Swain A (2008) The role of Sox9 in prostate development. Differentiation 76(6):728–735

    Article  CAS  PubMed  Google Scholar 

  99. Yuva-Aydemir Y, Simkin A, Gascon E, Gao FB (2011) MicroRNA-9: functional evolution of a conserved small regulatory RNA. RNA Biol 8(4):557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tan SL, Ohtsuka T, González A, Kageyama R (2012) MicroRNA9 regulates neural stem cell differentiation by controlling Hes1 expression dynamics in the developing brain. Genes Cells 17(12):952–961

    Article  CAS  PubMed  Google Scholar 

  101. Coolen M, Katz S, Bally-Cuif L (2013) miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci 7:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Bonev B, Pisco A, Papalopulu N (2011) MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 20(1):19–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 31(9):3407–3422

    Article  CAS  PubMed  Google Scholar 

  104. Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16(4):365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Denli AM, Cao X, Gage FH (2009) miR-9 and TLX: chasing tails in neural stem cells. Nat Struct Mol Biol 16(4):346–347

    Article  CAS  PubMed  Google Scholar 

  106. Jiang JQ, Zhou Z (2013) Removal of pharmaceutical residues by ferrate(VI. PLoS One 8(2):e55729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 11(6):641–648

    Article  CAS  PubMed  Google Scholar 

  108. Otaegi G, Pollock A, Hong J, Sun T (2011) MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords. J Neurosci 31(3):809–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Garaffo G, Conte D, Provero P, Tomaiuolo D, Luo Z, Pinciroli P, Peano C, D’Atri I et al (2015) The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and −200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci 68:103–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Clovis YM, Enard W, Marinaro F, Huttner WB, De Pietri Tonelli D (2012) Convergent repression of Foxp2 3ʹUTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 139(18):3332–3342

    Article  CAS  PubMed  Google Scholar 

  111. Laneve P, Gioia U, Andriotto A, Moretti F, Bozzoni I, Caffarelli E (2010) A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Res 38(20):6895–6905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460(7255):642–646

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML, Trümbach D, Wurst W et al (2014) MicroRNA-9 controls dendritic development by targeting REST. Elife 3. doi:10.7554/eLife.02755

  115. Rougvie AE (2001) Control of developmental timing in animals. Nat Rev Genet 2(9):690–701

    Article  CAS  PubMed  Google Scholar 

  116. Wulczyn FG, Smirnova L, Rybak A, Brandt C, Kwidzinski E, Ninnemann O, Strehle M, Seiler A et al (2007) Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J 21(2):415–426

    Article  CAS  PubMed  Google Scholar 

  117. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987–993

    Article  CAS  PubMed  Google Scholar 

  118. Zhao H, Li M, Li L, Yang X, Lan G, Zhang Y (2013) MiR-133b is down-regulated in human osteosarcoma and inhibits osteosarcoma cells proliferation, migration and invasion, and promotes apoptosis. PLoS One 8(12):e83571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339(2):327–335

    Article  CAS  PubMed  Google Scholar 

  120. Renault VM, Rafalski VA, Morgan AA, Salih DA, Brett JO, Webb AE, Villeda SA, Thekkat PU et al (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5(5):527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y, Agarwal R, Paun BC et al (2009) The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterol 136(5):1689–1700

    Article  CAS  Google Scholar 

  122. Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A (2011) The microRNA cluster miR-106b∼25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY) 3(2):108–124

    Article  CAS  Google Scholar 

  123. Rodríguez-Aznar E, Barrallo-Gimeno A, Nieto MA (2013) Scratch2 prevents cell cycle re-entry by repressing miR-25 in postmitotic primary neurons. J Neurosci 33(12):5095–5105

    Article  PubMed  CAS  Google Scholar 

  124. Lu D, Davis MP, Abreu-Goodger C, Wang W, Campos LS, Siede J, Vigorito E, Skarnes WC et al (2012) MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fibroblast cells to iPSCs. PLoS One 7(8):e40938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Herzer S, Silahtaroglu A, Meister B (2012) Locked nucleic acid-based in situ hybridisation reveals miR-7a as a hypothalamus-enriched microRNA with a distinct expression pattern. J Neuroendocrinol 24(12):1492–1504

    Article  CAS  PubMed  Google Scholar 

  126. Sun G, Ye P, Murai K, Lang MF, Li S, Zhang H, Li W, Fu C et al (2011) miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun 2:529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, Santistevan NJ, Li W et al (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189(1):127–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bier A, Giladi N, Kronfeld N, Lee HK, Cazacu S, Finniss S, Xiang C, Poisson L et al (2013) MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 4(5):665–676

    Article  PubMed  PubMed Central  Google Scholar 

  129. Althoff K, Beckers A, Odersky A, Mestdagh P, Köster J, Bray IM, Bryan K, Vandesompele J et al (2013) MiR-137 functions as a tumor suppressor in neuroblastoma by downregulating KDM1A. Int J Cancer 133(5):1064–1073

    Article  CAS  PubMed  Google Scholar 

  130. Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR, Goel A (2010) Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 70(16):6609–6618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG, Erickson PF, Shellman YG et al (2008) MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 68(5):1362–1368

    Article  CAS  PubMed  Google Scholar 

  132. Liu M, Lang N, Qiu M, Xu F, Li Q, Tang Q, Chen J, Chen X et al (2011) miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int J Cancer 128(6):1269–1279

    Article  CAS  PubMed  Google Scholar 

  133. Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng ZQ, Luo Y et al (2010) MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28(6):1060–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tarantino C, Paolella G, Cozzuto L, Minopoli G, Pastore L, Parisi S, Russo T (2010) miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. FASEB J 24(9):3255–3263

    Article  CAS  PubMed  Google Scholar 

  135. Rago L, Beattie R, Taylor V, Winter J (2014) miR379-410 cluster miRNAs regulate neurogenesis and neuronal migration by fine-tuning N-cadherin. EMBO J 33(8):906–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289

    Article  CAS  PubMed  Google Scholar 

  137. Tai HC, Schuman EM (2006) MicroRNA: microRNAs reach out into dendrites. Curr Biol 16(4):R121–R123

    Article  CAS  PubMed  Google Scholar 

  138. Huang W, Liu X, Cao J, Meng F, Li M, Chen B, Zhang J (2015) miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. J Mol Neurosci 55(4):821–829

    Article  CAS  PubMed  Google Scholar 

  139. Gaughwin P, Ciesla M, Yang H, Lim B, Brundin P (2011) Stage-specific modulation of cortical neuronal development by Mmu-miR-134. Cereb Cortex 21(8):1857–1869

    Article  PubMed  Google Scholar 

  140. Chi W, Meng F, Li Y, Wang Q, Wang G, Han S, Wang P, Li J (2014) Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B. Neurosci 277:111–122

    Article  CAS  Google Scholar 

  141. Shikanai M, Nakajima K, Kawauchi T (2011) N-cadherin regulates radial glial fiber-dependent migration of cortical locomoting neurons. Commun Integr Biol 4(3):326–330

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    Article  CAS  PubMed  Google Scholar 

  143. Boese AS, Saba R, Campbell K, Majer A, Medina S, Burton L, Booth TF, Chong P et al (2016) MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol Cell Neurosci 71:13–24

    Article  CAS  PubMed  Google Scholar 

  144. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zheng M, Jiang YP, Chen W, Li KD, Liu X, Gao SY, Feng H, Wang SS et al (2015) Snail and slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma. Oncotarget 6(9):6797–6810

    Article  PubMed  Google Scholar 

  146. Peng C, Li N, Ng YK, Zhang J, Meier F, Theis FJ, Merkenschlager M, Chen W et al (2012) A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. J Neurosci 32(38):13292–13308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17(1):126–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39(5):749–765

    Article  CAS  PubMed  Google Scholar 

  149. Pevny LH, Nicolis SK (2010) Sox2 roles in neural stem cells. Int J Biochem Cell Biol 42(3):421–424

    Article  CAS  PubMed  Google Scholar 

  150. Choi PS, Zakhary L, Choi WY, Caron S, Alvarez-Saavedra E, Miska EA, McManus M, Harfe B et al (2008) Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57(1):41–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pandey A, Singh P, Jauhari A, Singh T, Khan F, Pant AB, Parmar D, Yadav S (2015) Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. J Neurochem 133(5):640–652

    Article  CAS  PubMed  Google Scholar 

  152. Morante J, Vallejo DM, Desplan C, Dominguez M (2013) Conserved miR-8/miR-200 defines a glial niche that controls neuroepithelial expansion and neuroblast transition. Dev Cell 27(2):174–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang Z, Hong Y, Xiang D, Zhu P, Wu E, Li W, Mosenson J, Wu WS (2015) MicroRNA-302/367 cluster governs hESC self-renewal by dually regulating cell cycle and apoptosis pathways. Stem Cell Reports 4(4):645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ren J, Jin P, Wang E, Marincola FM, Stroncek DF (2009) MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J Transl Med 7:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Kuo CH, Deng JH, Deng Q, Ying SY (2012) A novel role of miR-302/367 in reprogramming. Biochem Biophys Res Commun 417(1):11–16

    Article  CAS  PubMed  Google Scholar 

  156. Rosa A, Spagnoli FM, Brivanlou AH (2009) The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection. Dev Cell 16(4):517–527

    Article  CAS  PubMed  Google Scholar 

  157. Kuo CH, Ying SY (2013) MicroRNA-mediated somatic cell reprogramming. J Cell Biochem 114(2):275–281

    Article  CAS  PubMed  Google Scholar 

  158. Ghasemi-Kasman M, Hajikaram M, Baharvand H, Javan M (2015) MicroRNA-mediated in vitro and in vivo direct conversion of astrocytes to neuroblasts. PLoS One 10(6):e0127878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lin SL, Chang DC, Ying SY, Leu D, Wu DT (2010) MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer Res 70(22):9473–9482

    Article  CAS  PubMed  Google Scholar 

  161. Liao B, Bao X, Liu L, Feng S, Zovoilis A, Liu W, Xue Y, Cai J et al (2011) MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 286(19):17359–17364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Akerblom M, Sachdeva R, Barde I, Verp S, Gentner B, Trono D, Jakobsson J (2012) MicroRNA-124 is a subventricular zone neuronal fate determinant. J Neurosci 32(26):8879–8889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Zhao C, Sun G, Li S, Lang MF, Yang S, Li W, Shi Y (2010) MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A 107(5):1876–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. de Chevigny A, Coré N, Follert P, Gaudin M, Barbry P, Béclin C, Cremer H (2012) miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci 15(8):1120–1126

    Article  PubMed  CAS  Google Scholar 

  165. Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J et al (2008) MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of nanog and LRH1. Stem Cells 26(1):17–29

    Article  CAS  PubMed  Google Scholar 

  166. Niu CS, Yang Y, Cheng CD (2013) MiR-134 regulates the proliferation and invasion of glioblastoma cells by reducing nanog expression. Int J Oncol 42(5):1533–1540

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sebastian Schmull for the critical reading of the manuscript. This work was supported by the Natural Science Foundation of China (grant nos. 81472098, 81371411, 81571208 YG2014MS45, and YJ2014001). The authors confirm that there has been no financial support for this research that could have influenced its outcome.

Grant information

Grant sponsor: Natural Science Foundation of China; Grant numbers 81371411, 81472098, 81571208, YG2014MS45, YJ2014001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Yang, Baorong He or Ding-Jun Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, L., An, J. et al. MicroRNA-Mediated Reprogramming of Somatic Cells into Neural Stem Cells or Neurons. Mol Neurobiol 54, 1587–1600 (2017). https://doi.org/10.1007/s12035-016-0115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0115-9

Keywords