Skip to main content

Advertisement

Log in

Proteome Analysis of Potential Synaptic Vesicle Cycle Biomarkers in the Cerebrospinal Fluid of Patients with Sporadic Creutzfeldt–Jakob Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sporadic Creutzfeldt–Jakob disease (sCJD) is the most frequent fatal human prion disease with a rapid progression and unknown mechanism. The synaptic vesicle (SV) cycle pathway has been a hot research field associated with many neurodegenerative diseases that affect synaptic function and thus may affect pathogenesis of the disorder. Here, we used the iTRAQ-based proteomic method and a KEGG pathway enrichment analysis to meticulously analyze all pathways involved in sCJD disease. In total, 1670 proteins were validated in pooled cerebrospinal fluid (CSF) from 20 patients with sCJD compared with that from 13 patients without CJD. The demographic analysis demonstrated that 557 proteins were upregulated and 595 proteins were downregulated with a 1.5-fold change, and 690 proteins involved in 39 pathways changed significantly (p ≤ 0.05) according to the enrichment analysis. The SV cycle pathway and proteins involved were further evaluated, and 14 proteins were confirmed to participate in the SV cycle pathway due to increased expression. Six key proteins, such as AP2A1, SYT1, SNAP25, STXBP1, CLTB, and Rab3a, showed the same trend by western blot as detected by iTRAQ. This is the first study to use high-throughput proteomics to accurately identify and quantify proteins in the SV cycle pathway of a neurodegenerative disease. These results will help define the mechanism and provide new insight into the pathogenetic factors involved in the SV cycle pathway in patients with sCJD. We hope that promising biomarkers can be identified in the CSF of patients with sCJD and other neurodegenerative disorders to help predict disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

sCJD:

Sporadic Creutzfeldt–Jakob disease

CSF:

Cerebrospinal fluid

SV:

Synaptic vesicle

CNS:

Central nervous system

SNARE:

Soluble N-ethylmaleimide-sensitive fusion protein attachment receptor

SNAP-25:

Synaptosomal-associated protein of 25 kDa

SYTI:

Synaptotagmin1

iTRAQ:

Isobaric tags for relative and absolute quantitation

LC:

Liquid chromatography

AD:

Alzheimer’s disease

LB:

Lewy body

References

  1. Chen C, Xiao D, Zhou W, Shi Q, Zhang H, Zhang J, Tian C, Zhang J, Dong X (2014) Global protein differential expression profiling of cerebrospinal fluid samples pooled from Chinese sporadic CJD and non-CJD patients. Mol Neurobiol 49(1):290–302. doi:10.1007/s12035-013-8519-2

    Article  CAS  PubMed  Google Scholar 

  2. Steinacker P, Rist W, Swiatek-de-Lange M, Lehnert S, Jesse S, Pabst A, Tumani H, von Arnim CA, Mitrova E, Kretzschmar HA, Lenter M, Wiltfang J, Otto M (2010) Ubiquitin as potential cerebrospinal fluid marker of Creutzfeldt–Jakob disease. Proteomics 10(1):81–89. doi:10.1002/pmic.200900246

    Article  CAS  PubMed  Google Scholar 

  3. Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P (2012) Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol 11(7):618–628. doi:10.1016/S1474-4422(12)70063-7

    Article  CAS  PubMed  Google Scholar 

  4. Brown P, Cathala F, Castaigne P, Gajdusek DC (1986) Creutzfeldt-Jakob disease: clinical analysis of a consecutive series of 230 neuropathologically verified cases. Ann Neurol 20(5):597–602. doi:10.1002/ana.410200507

    Article  CAS  PubMed  Google Scholar 

  5. Zhang XM, Xiao K, Zhou W, Chen C, Lv Y, Chen LN, Shi Q, Dong XP (2014) Analysis of the compliance and the related influence factors in the follow-up process of surveillance for Creutzfeldt-Jakob disease in China. Prion 8(5):359–368. doi:10.4161/19336896.2014.983747

    Article  PubMed  PubMed Central  Google Scholar 

  6. Budka H, Aguzzi A, Brown P, Brucher JM, Bugiani O, Gullotta F, Haltia M, Hauw JJ, Ironside JW, Jellinger K, et al. (1995) Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol 5(4):459–466

    Article  CAS  PubMed  Google Scholar 

  7. Dislich B, Wohlrab F, Bachhuber T, Muller SA, Kuhn PH, Hogl S, Meyer-Luehmann M, Lichtenthaler SF (2015) Label-free quantitative proteomics of mouse cerebrospinal fluid detects beta-site APP cleaving enzyme (BACE1) protease substrates in vivo. Mol Cell Proteomics 14(10):2550–2563. doi:10.1074/mcp.M114.041533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207. doi:10.1038/nature11320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramos-Miguel A, Hercher C, Beasley CL, Barr AM, Bayer TA, Falkai P, Leurgans SE, Schneider JA, Bennett DA, Honer WG (2015) Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol Neurodegener 10:65. doi:10.1186/s13024-015-0061-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gray BC, Siskova Z, Perry VH, O’Connor V (2009) Selective presynaptic degeneration in the synaptopathy associated with ME7-induced hippocampal pathology. Neurobiol Dis 35(1):63–74. doi:10.1016/j.nbd.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, Sudhof TC, Shen J (2009) Presenilins are essential for regulating neurotransmitter release. Nature 460(7255):632–636. doi:10.1038/nature08177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burgoyne RD, Morgan A (2011) Chaperoning the SNAREs: a role in preventing neurodegeneration? Nat Cell Biol 13(1):8–9. doi:10.1038/ncb0111-8

    Article  CAS  PubMed  Google Scholar 

  13. Geppert M, Sudhof TC (1998) RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu Rev Neurosci 21:75–95. doi:10.1146/annurev.neuro.21.1.75

    Article  CAS  PubMed  Google Scholar 

  14. Schweizer FE, Ryan TA (2006) The synaptic vesicle: cycle of exocytosis and endocytosis. Curr Opin Neurobiol 16(3):298–304. doi:10.1016/j.conb.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez-Chacon R, Wolfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Munoz M, Rosenmund C, Montesinos ML, Sanes JR, Schneggenburger R, Sudhof TC (2004) The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 42(2):237–251

    Article  CAS  PubMed  Google Scholar 

  16. Esposito G, Ana Clara F, Verstreken P (2012) Synaptic vesicle trafficking and Parkinson’s disease. Dev Neurobiol 72(1):134–144. doi:10.1002/dneu.20916

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Pang C, Wei H, Song M, Meng Y, Ma J, Fan S, Yu S (2015) iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). J Proteome 126:68–81. doi:10.1016/j.jprot.2015.05.031

    Article  CAS  Google Scholar 

  18. Chen LN, Shi Q, Zhang BY, Zhang XM, Wang J, Xiao K, Lv Y, Sun J, Yang XD, Chen C, Zhou W, Han J, Dong XP (2015) Proteomic analyses for the global S-nitrosylated proteins in the brain tissues of different human prion diseases. Mol Neurobiol. doi:10.1007/s12035-015-9440-7

    Google Scholar 

  19. Shi Q, Chen LN, Zhang BY, Xiao K, Zhou W, Chen C, Zhang XM, Tian C, Gao C, Wang J, Han J, Dong XP (2015) Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.MOL. Cell Proteomics 14(4):854–869. doi:10.1074/mcp.M114.038018

    Article  CAS  Google Scholar 

  20. Wu LG, Hamid E, Shin W, Chiang HC (2014) Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 76:301–331. doi:10.1146/annurev-physiol-021113-170305

    Article  CAS  PubMed  Google Scholar 

  21. Chapman MA (2014) Interactions between cell adhesion and the synaptic vesicle cycle in Parkinson’s disease. Med Hypotheses 83(2):203–207. doi:10.1016/j.mehy.2014.04.029

    Article  CAS  PubMed  Google Scholar 

  22. Lanska DJ (2001) Diagnosis of Creutzfeldt-Jakob disease: effect of clinical criteria on incidence estimates. Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt-Jakob disease. Neurology 56(10):1422–1423

    Article  CAS  PubMed  Google Scholar 

  23. Schmitz M, Ebert E, Stoeck K, Karch A, Collins S, Calero M, Sklaviadis T, Laplanche J, Golanska E, Baldeiras I, Satoh K, Sanchez-Valle R, Ladogana A, Skinningsrud A, Hammarin A, Mitrova E, Llorens F, Kim YS, Green A, Zerr I (2015) Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt-Jakob disease diagnostic. Mol Neurobiol. doi:10.1007/s12035-015-9167-5

    PubMed Central  Google Scholar 

  24. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17):4646–4658

    Article  CAS  PubMed  Google Scholar 

  25. Zhang M, Luo SC (2016) Gene expression profiling of epithelial ovarian cancer reveals key genes and pathways associated with chemotherapy resistance. Genet Mol Res 15(1). doi:10.4238/gmr.15017496

  26. Kasprowicz J, Kuenen S, Miskiewicz K, Habets RL, Smitz L, Verstreken P (2008) Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J Cell Biol 182(5):1007–1016. doi:10.1083/jcb.200804162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kononenko NL, Haucke V (2015) Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron 85(3):484–496. doi:10.1016/j.neuron.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez-Alfonso T, Ryan TA (2006) The efficiency of the synaptic vesicle cycle at central nervous system synapses. Trends Cell Biol 16(8):413–420. doi:10.1016/j.tcb.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  29. Rizzoli SO (2014) Synaptic vesicle recycling: steps and principles. EMBO J 33(8):788–822. doi:10.1002/embj.201386357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferrer I (2002) Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum 1(3):213–222. doi:10.1080/14734220260418448

    Article  CAS  PubMed  Google Scholar 

  31. Casillas-Espinosa PM, Powell KL, O’Brien TJ (2012) Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 53(Suppl 9):41–58. doi:10.1111/epi.12034

    Article  CAS  PubMed  Google Scholar 

  32. Gottmann K (2008) Transsynaptic modulation of the synaptic vesicle cycle by cell-adhesion molecules. J Neurosci Res 86(2):223–232. doi:10.1002/jnr.21484

    Article  CAS  PubMed  Google Scholar 

  33. Koenig JH, Ikeda K (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9(11):3844–3860 PMID:2573698

    CAS  PubMed  Google Scholar 

  34. Sudhof TC (2013) A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat Med 19(10):1227–1231. doi:10.1038/nm.3338

    Article  PubMed  Google Scholar 

  35. Lou X, Shin J, Yang Y, Kim J, Shin YK (2015) Synaptotagmin-1 is an antagonist for Munc18-1 in SNARE zippering. J Biol Chem 290(16):10535–10543. doi:10.1074/jbc.M114.631341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vrljic M, Strop P, Ernst JA, Sutton RB, Chu S, Brunger AT (2010) Molecular mechanism of the synaptotagmin-SNARE interaction in Ca2+-triggered vesicle fusion. Nat Struct Mol Biol 17(3):325–331. doi:10.1038/nsmb.1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi UB, Strop P, Vrljic M, Chu S, Brunger AT, Weninger KR (2010) Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat Struct Mol Biol 17(3):318–324. doi:10.1038/nsmb.1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng Y, Wang J, Wang Y, Ding M (2015) Synaptotagmin 1 directs repetitive release by coupling vesicle exocytosis to the Rab3 cycle. ELIFE 4. doi:10.7554/eLife.05118

  39. Morimoto T, Wang XH, Poo MM (1998) Overexpression of synaptotagmin modulates short-term synaptic plasticity at developing neuromuscular junctions. Neuroscience 82(4):969–978

    Article  CAS  PubMed  Google Scholar 

  40. Coleman WL, Bykhovskaia M (2010) Cooperative regulation of neurotransmitter release by Rab3a and synapsin II. Mol Cell Neurosci 44(2):190–200. doi:10.1016/j.mcn.2010.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xie C, Li J, Guo T, Yan Y, Tang C, Wang Y, Chen P, Wang X, Liang S (2014) Rab3A is a new interacting partner of synaptotagmin I and may modulate synaptic membrane fusion through a competitive mechanism. Biochem Bioph Res Co 444(4):491–495. doi:10.1016/j.bbrc.2014.01.090

    Article  CAS  Google Scholar 

  42. Han GA, Malintan NT, Collins BM, Meunier FA, Sugita S (2010) Munc18-1 as a key regulator of neurosecretion. J Neurochem 115(1):1–10. doi:10.1111/j.1471-4159.2010.06900.x

    Article  CAS  PubMed  Google Scholar 

  43. Ma L, Rebane AA, Yang G, Xi Z, Kang Y, Gao Y, Zhang Y(2015) Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. ELIFE 4. doi: 10.7554/eLife.09580

  44. Giraudo CG, Garcia-Diaz A, Eng WS, Chen Y, Hendrickson WA, Melia TJ, Rothman JE (2009) Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323(5913):512–516. doi:10.1126/science.1166500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maximov A, Tang J, Yang X, Pang ZP, Sudhof TC (2009) Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323(5913):516–521. doi:10.1126/science.1166505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jorquera RA, Huntwork-Rodriguez S, Akbergenova Y, Cho RW, Littleton JT (2012) Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J Neurosci 32(50):18234–18245. doi:10.1523/JNEUROSCI.3212-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson MC, Mehta PP, Hess EJ (1996) SNAP-25, enSNAREd in neurotransmission and regulation of behaviour. Biochem Soc Trans 24(3):670–676

    Article  CAS  PubMed  Google Scholar 

  48. Verderio C, Pozzi D, Pravettoni E, Inverardi F, Schenk U, Coco S, Proux-Gillardeaux V, Galli T, Rossetto O, Frassoni C, Matteoli M (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41(4):599–610

    Article  CAS  PubMed  Google Scholar 

  49. Watanabe S, Trimbuch T, Camacho-Perez M, Rost BR, Brokowski B, Sohl-Kielczynski B, Felies A, Davis MW, Rosenmund C, Jorgensen EM (2014) Clathrin regenerates synaptic vesicles from endosomes. Nature 515(7526):228–233. doi:10.1038/nature13846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447. doi:10.1146/annurev.biochem.72.121801.161800

    Article  CAS  PubMed  Google Scholar 

  51. Rodemer C, Haucke V (2008) Clathrin/AP-2-dependent endocytosis: a novel playground for the pharmacological toolbox? Handb Exp Pharmacol 186:105–122. doi:10.1007/978-3-540-72843-6_5

    Article  CAS  Google Scholar 

  52. Dalfó E, Ferrer I (2005) ?-synuclein binding to rab3a in multiple system atrophy. Neurosci Lett 380(1–2):170–175. doi:10.1016/j.neulet.2005.01.034

    Article  PubMed  Google Scholar 

  53. Dalfo E, Barrachina M, Rosa JL, Ambrosio S, Ferrer I (2004) Abnormal alpha-synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease. Neurobiol Dis 16(1):92–97. doi:10.1016/j.nbd.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  54. Gawinecka J, Cardone F, Asif AR, De Pascalis A, Wemheuer WM, Schulz-Schaeffer WJ, Pocchiari M, Zerr I (2012) Sporadic Creutzfeldt-Jakob disease subtype-specific alterations of the brain proteome: impact on Rab3a recycling. Proteomics 12(23–24):3610–3620. doi:10.1002/pmic.201200201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baker K, Gordon SL, Grozeva D, van Kogelenberg M, Roberts NY, Pike M, Blair E, Hurles ME, Chong WK, Baldeweg T, Kurian MA, Boyd SG, Cousin MA, Raymond FL (2015) Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling. J Clin Invest 125(4):1670–1678. doi:10.1172/JCI79765

    PubMed  PubMed Central  Google Scholar 

  56. Jiang CH, Tsien JZ, Schultz PG, Hu Y (2001) The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci U S A 98(4):1930–1934. doi:10.1073/pnas.98.4.1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Toonen RF, Wierda K, Sons MS, de Wit H, Cornelisse LN, Brussaard A, Plomp JJ, Verhage M (2006) Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size. Proc Natl Acad Sci U S A 103(48):18332–18337. doi:10.1073/pnas.0608507103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR (2009) Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 14(6):601–613. doi:10.1038/mp.2008.7

    Article  CAS  PubMed  Google Scholar 

  59. Uriguen L, Gil-Pisa I, Munarriz-Cuezva E, Berrocoso E, Pascau J, Soto-Montenegro ML, Gutierrez-Adan A, Pintado B, Madrigal JL, Castro E, Sanchez-Blazquez P, Ortega JE, Guerrero MJ, Ferrer-Alcon M, Garcia-Sevilla JA, Mico JA, Desco M, Leza JC, Pazos A, Garzon J, Meana JJ (2013) Behavioral, neurochemical and morphological changes induced by the overexpression of munc18-1a in brain of mice: relevance to schizophrenia. Transl Psychiatry 3:e221. doi:10.1038/tp.2012.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Johnson RD, Oliver PL, Davies KE (2008) SNARE proteins and schizophrenia: linking synaptic and neurodevelopmental hypotheses. Acta Biochim Pol 55(4):619–628

    CAS  PubMed  Google Scholar 

  61. Thompson PM, Kelley M, Yao J, Tsai G, van Kammen DP (2003) Elevated cerebrospinal fluid SNAP-25 in schizophrenia. Biol Psychiatry 53(12):1132–1137

    Article  CAS  PubMed  Google Scholar 

  62. Owe-Larsson B, Berglund M, Kristensson K, Garoff H, Larhammar D, Brodin L, Low P (1999) Perturbation of the synaptic release machinery in hippocampal neurons by overexpression of SNAP-25 with the Semliki Forest virus vector.EUR. J Neurosci 11(6):1981–1987

    CAS  Google Scholar 

  63. Shyng SL, Heuser JE, Harris DA (1994) A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J Cell Biol 125(6):1239–1250

    Article  CAS  PubMed  Google Scholar 

  64. Poulsen E, Larsen A, Zollo A, Jørgensen A, Sanggaard K, Enghild J, Matrone C (2015) New insights to clathrin and adaptor protein 2 for the design and development of therapeutic strategies. Int J Mol Sci 16(12):29446–29453. doi:10.3390/ijms161226181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ferrer I, Rivera R, Blanco R, Marti E (1999) Expression of proteins linked to exocytosis and neurotransmission in patients with Creutzfeldt-Jakob disease. Neurobiol DIS 6(2):92–100

    Article  CAS  PubMed  Google Scholar 

  66. Zhang YP, Wan P, Wang HQ, Zhao H, Xu YX, Yang R, Zhu CQ (2011) Effect of neuronal excitotoxicity on Munc18-1 distribution in nuclei of rat hippocampal neuron and primary cultured neuron. Neurosci Bull 27(3):163–172. doi:10.1007/s12264-011-1007-7

    Article  CAS  PubMed  Google Scholar 

  67. Smith R, Klein P, Koc-Schmitz Y, Waldvogel HJ, Faull RL, Brundin P, Plomann M, Li JY (2007) Loss of SNAP-25 and rabphilin 3a in sensory-motor cortex in Huntington’s disease. J Neurochem 103(1):115–123. doi:10.1111/j.1471-4159.2007.04703.x

    CAS  PubMed  Google Scholar 

  68. Marttinen M, Kurkinen KM, Soininen H, Haapasalo A, Hiltunen M (2015) Synaptic dysfunction and septin protein family members in neurodegenerative diseases. Mol Neurodegener 10:16. doi:10.1186/s13024-015-0013-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Xiaoping Dong, Qi shi, and Wei zhou for their assistance with the sample preparation. This study was supported by the Ministry of Agriculture of China, 948 projects (2014-S9), and the Foundation of Chinese Ministry of Science and Technology (project no. 2015BAI07B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Yang.

Ethics declarations

All CSF samples and the study protocol were approved by the Research Ethics Committee of the National Institute for Viral Disease Control and Prevention, China, CDC. All patients signed informed consent forms before samples were collected.

Additional information

Chunyu Wang and Deming Zhao are contributed equally to this work.

Electronic supplementary material

ESM 1

(XLSX 2825 kb)

ESM 2

(XLSX 4094 kb)

ESM 3

(XLSX 384 kb)

ESM 4

(XLSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhao, D., Shah, S.Z.A. et al. Proteome Analysis of Potential Synaptic Vesicle Cycle Biomarkers in the Cerebrospinal Fluid of Patients with Sporadic Creutzfeldt–Jakob Disease. Mol Neurobiol 54, 5177–5191 (2017). https://doi.org/10.1007/s12035-016-0029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0029-6

Keywords

Navigation