Skip to main content

Advertisement

Log in

Analgesic Effects of Danggui-Shaoyao-San on Various “Phenotypes” of Nociception and Inflammation in a Formalin Pain Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Danggui-Shaoyao-San (DSS) is a traditional Chinese medicine, which has long been used for pain treatment and has been demonstrated to possess anti-oxidative, cognitive enhancement, and anti-depressant effects. In the present study, the effects of aqueous extracts of DSS on spontaneous pain behaviors and long-term hyperalgesia were examined to investigate the anti-nociceptive effects and underlying mechanisms. Single pretreatment of DSS dose-dependently reduced spontaneous flinches/licking time in the second, rather than the first, phase after subcutaneous injection of 5 % formalin into one hindpaw, in doses of 2.4 and 9.6 g/kg. DSS also dose-dependently inhibited FOS and cyclooxygenase-2 (COX-2) expression in both superficial and deep layers within the spinal dorsal horn. Further, DSS reduced hypoalgesia in the injected paw from 1 to 3 days and produced anti-hyperalgesic actions in both the injected paw after 3 days and non-injected paw. These data suggest involvement of enhancement of descending pain inhibition by suppression of 5-HTT levels in the spinal dorsal horn and reduction of peripheral long-term inflammation, including paw edema and ulcers. These findings suggest that DSS may be a useful therapeutic agent for short- and long-term inflammation induced pain, through both anti-inflammatory and suppression of central sensitization mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Leon-Casasola OA (2013) Opioids for chronic pain: new evidence, new strategies, safe prescribing. Am J Med 126:S3–11

    Article  CAS  PubMed  Google Scholar 

  2. Merskey M, Bogduk N (eds) (1994) Classification of chronic pain. IASP press, Seattle

    Google Scholar 

  3. Yin JB, Cui GB, Mi MS, Du YX, Wu SX, Li YQ, Wang W (2014) Local infiltration analgesia for postoperative pain after hip arthroplasty: a systematic review and meta-analysis. J Pain 15:781–799

    Article  PubMed  Google Scholar 

  4. Fu KY, Light AR, Maixner W (2001) Long-lasting inflammation and long-term hyperalgesia after subcutaneous formalin injection into the rat hindpaw. J Pain 2:2–11

    Article  CAS  PubMed  Google Scholar 

  5. Yu HY, Liu MG, Liu DN, Shang GW, Wang Y, Qi C, Zhang KP, Song ZJ et al (2007) Antinociceptive effects of systemic paeoniflorin on bee venom-induced various ‘phenotypes’ of nociception and hypersensitivity. Pharmacol Biochem Behav 88:131–140

    Article  CAS  PubMed  Google Scholar 

  6. Kou J, Zhu D, Yan Y (2005) Neuroprotective effects of the aqueous extract of the Chinese medicine Danggui-Shaoyao-san on aged mice. J Ethnopharmacol 97:313–318

    Article  PubMed  Google Scholar 

  7. Jiang H, Shen Y, Wang XG (2010) Current progress of Chinese medicinal treatment of endometriosis. Chin J Integr Med 16:283–288

    Article  PubMed  Google Scholar 

  8. Kotani N, Oyama T, Sakai I, Hashimoto H, Muraoka M, Ogawa Y, Matsuki A (1997) Analgesic effect of a herbal medicine for treatment of primary dysmenorrhea—a double-blind study. Am J Chin Med 25:205–212

    Article  CAS  PubMed  Google Scholar 

  9. Hatip-Al-Khatib I, Egashira N, Mishima K, Iwasaki K, Kurauchi K, Inui K, Ikeda T, Fujiwara M (2004) Determination of the effectiveness of components of the herbal medicine Toki-Shakuyaku-San and fractions of Angelica acutiloba in improving the scopolamine-induced impairment of rat’s spatial cognition in eight-armed radial maze test. J Pharmacol Sci 96:33–41

    Article  CAS  PubMed  Google Scholar 

  10. Kano Y, Takaguchi S, Nohno T, Hiragami F, Kawamura K, Iwama MK, Miyamoto K, Takehara M (2002) Chinese medicine induces neurite outgrowth in PC12 mutant cells incapable of differentiation. Am J Chin Med 30:287–295

    Article  CAS  PubMed  Google Scholar 

  11. Zhou K, Jia N, Jiang N, Wang F, and Kou J (2015) Beneficial effect of Danggui-Shaoyao-san, a Traditional Chinese Medicine, on drowsiness induced by chronic restraint stress. Neurosci Lett

  12. Hua YQ, Su SL, Duan JA, Wang QJ, Lu Y, Chen L (2008) Danggui-Shaoyao-San, a traditional Chinese prescription, suppresses PGF2alpha production in endometrial epithelial cells by inhibiting COX-2 expression and activity. Phytomedicine 15:1046–1052

    Article  CAS  PubMed  Google Scholar 

  13. Liu IM, Tzeng TF, Liou SS, Chang CJ (2012) Beneficial effect of traditional Chinese medicinal formula danggui-shaoyao-san on advanced glycation end-product-mediated renal injury in streptozotocin-diabetic rats. Evid Based Complement Alternat Med 2012:140103

    PubMed  Google Scholar 

  14. Qian YF, Wang H, Yao WB, Gao XD (2008) Aqueous extract of the Chinese medicine, Danggui-Shaoyao-San, inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Cell Biol Int 32:304–311

    PubMed  Google Scholar 

  15. Li H, Gu Z, Wu L, Xia L, Zhou K, E L, Wang D, Kou J et al (2014) Danggui-shaoyao-san, a traditional Chinese medicine prescription, alleviates the orthodontic pain and inhibits neuronal and microglia activation. Chin Med J (Engl) 127:3630–3637

    Google Scholar 

  16. Chen L, Qi J, Chang YX, Zhu D, Yu B (2009) Identification and determination of the major constituents in Traditional Chinese Medicinal formula Danggui-Shaoyao-San by HPLC-DAD-ESI-MS/MS. J Pharm Biomed Anal 50:127–137

    Article  CAS  PubMed  Google Scholar 

  17. Bai L, Wang W, Dong YL, Huang J, Wang XY, Wang LY, Li YQ, Wu SX (2012) Attenuation of mouse somatic and emotional inflammatory pain by hydralazine through scavenging acrolein and inhibiting neuronal activation. Pain Physician 15:311–326

    PubMed  Google Scholar 

  18. Zhuang ZY, Gerner P, Woolf CJ, Ji RR (2005) ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114:149–159

    Article  PubMed  Google Scholar 

  19. Guo W, Wang H, Watanabe M, Shimizu K, Zou S, Lagraize SC, Wei F, Dubner R et al (2007) Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guzowski JF, Timlin JA, Roysam B, Mcnaughton BL, Worley PF, Barnes CA (2005) Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr Opin Neurobiol 15:599–606

    Article  CAS  PubMed  Google Scholar 

  21. Presley RW, Menetrey D, Levine JD, Basbaum AI (1990) Systemic morphine suppresses noxious stimulus-evoked Fos protein-like immunoreactivity in the rat spinal cord. J Neurosci 10:323–335

    CAS  PubMed  Google Scholar 

  22. Roussy G, Dansereau MA, Dore-Savard L, Belleville K, Beaudet N, Richelson E, Sarret P (2008) Spinal NTS1 receptors regulate nociceptive signaling in a rat formalin tonic pain model. J Neurochem 105:1100–1114

    Article  CAS  PubMed  Google Scholar 

  23. Lee KK, Omiya Y, Yuzurihara M, Kase Y, Kobayashi H (2011) Antinociceptive effect of paeoniflorin via spinal alpha(2)-adrenoceptor activation in diabetic mice. Eur J Pain 15:1035–1039

    Article  CAS  PubMed  Google Scholar 

  24. Tsai HY, Lin YT, Tsai CH, Chen YF (2001) Effects of paeoniflorin on the formalin-induced nociceptive behaviour in mice. J Ethnopharmacol 75:267–271

    Article  CAS  PubMed  Google Scholar 

  25. Zhang XJ, Chen HL, Li Z, Zhang HQ, Xu HX, Sung JJ, Bian ZX (2009) Analgesic effect of paeoniflorin in rats with neonatal maternal separation-induced visceral hyperalgesia is mediated through adenosine A(1) receptor by inhibiting the extracellular signal-regulated protein kinase (ERK) pathway. Pharmacol Biochem Behav 94:88–97

    Article  CAS  PubMed  Google Scholar 

  26. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP et al (2007) An ion channel essential for sensing chemical damage. J Neurosci 27:11412–11415

    Article  CAS  PubMed  Google Scholar 

  27. Mcnamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA et al (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104:13525–13530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mcroberts JA, Ennes HS, Marvizon JC, Fanselow MS, Mayer EA, Vissel B (2011) Selective knockdown of NMDA receptors in primary afferent neurons decreases pain during phase 2 of the formalin test. Neuroscience 172:474–482

    Article  CAS  PubMed  Google Scholar 

  29. Abbadie C, Taylor BK, Peterson MA, Basbaum AI (1997) Differential contribution of the two phases of the formalin test to the pattern of c-fos expression in the rat spinal cord: studies with remifentanil and lidocaine. Pain 69:101–110

    Article  CAS  PubMed  Google Scholar 

  30. Chen HS, Li MM, Shi J, Chen J (2003) Supraspinal contribution to development of both tonic nociception and referred mirror hyperalgesia: a comparative study between formalin test and bee venom test in the rat. Anesthesiology 98:1231–1236

    Article  CAS  PubMed  Google Scholar 

  31. Sun YH, Dong YL, Wang YT, Zhao GL, Lu GJ, Yang J, Wu SX, Gu ZX et al (2013) Synergistic analgesia of duloxetine and celecoxib in the mouse formalin test: a combination analysis. PLoS ONE 8, e76603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yin JB, Wu HH, Dong YL, Zhang T, Wang J, Zhang Y, Wei YY, Lu YC et al (2014) Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray. Front Neural Circ 8:137

    Google Scholar 

  33. Liu CR, Duan QZ, Wang W, Wei YY, Zhang H, Li YQ, Wu SX, Xu LX (2011) Effects of intrathecal isoflurane administration on nociception and Fos expression in the rat spinal cord. Eur J Anaesthesiol 28:112–119

    Article  CAS  PubMed  Google Scholar 

  34. Molander C, Grant G (1985) Cutaneous projections from the rat hindlimb foot to the substantia gelatinosa of the spinal cord studied by transganglionic transport of WGA-HRP conjugate. J Comp Neurol 237:476–484

    Article  CAS  PubMed  Google Scholar 

  35. Sugiura Y, Lee CL, Perl ER (1986) Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 234:358–361

    Article  CAS  PubMed  Google Scholar 

  36. Jasmin L, Wang H, Tarczy-Hornoch K, Levine JD, Basbaum AI (1994) Differential effects of morphine on noxious stimulus-evoked fos-like immunoreactivity in subpopulations of spinoparabrachial neurons. J Neurosci 14:7252–7260

    CAS  PubMed  Google Scholar 

  37. Luo C, Chen J, Li HL, Li JS (1998) Spatial and temporal expression of c-Fos protein in the spinal cord of anesthetized rat induced by subcutaneous bee venom injection. Brain Res 806:175–185

    Article  CAS  PubMed  Google Scholar 

  38. Dickenson AH, Sullivan AF (1986) Electrophysiological studies on the effects of intrathecal morphine on nociceptive neurones in the rat dorsal horn. Pain 24:211–222

    Article  CAS  PubMed  Google Scholar 

  39. Sastry BR, Goh JW (1983) Actions of morphine and met-enkephalin-amide on nociceptor driven neurones in substantia gelatinosa and deeper dorsal horn. Neuropharmacology 22:119–122

    Article  CAS  PubMed  Google Scholar 

  40. Willis WD, Coggeshall RE (1991) Mechanisms of the spinal cord. Plenum, New York

    Book  Google Scholar 

  41. Bovill JG (1997) Mechanisms of actions of opioids and non-steroidal anti-inflammatory drugs. Eur J Anaesthesiol Suppl 15:9–15

    Article  CAS  PubMed  Google Scholar 

  42. Burian M, Geisslinger G (2005) COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther 107:139–154

    Article  CAS  PubMed  Google Scholar 

  43. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410:471–475

    Article  CAS  PubMed  Google Scholar 

  44. Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood–brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 19:10923–10930

    CAS  PubMed  Google Scholar 

  45. Maihofner C, Tegeder I, Euchenhofer C, Dewitt D, Brune K, Bang R, Neuhuber W, Geisslinger G (2000) Localization and regulation of cyclo-oxygenase-1 and −2 and neuronal nitric oxide synthase in mouse spinal cord. Neuroscience 101:1093–1108

    Article  CAS  PubMed  Google Scholar 

  46. Beiche F, Scheuerer S, Brune K, Geisslinger G, Goppelt-Struebe M (1996) Up-regulation of cyclooxygenase-2 mRNA in the rat spinal cord following peripheral inflammation. FEBS Lett 390:165–169

    Article  CAS  PubMed  Google Scholar 

  47. Vardeh D, Wang D, Costigan M, Lazarus M, Saper CB, Woolf CJ, Fitzgerald GA, Samad TA (2009) COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. J Clin Invest 119:287–294

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yaksh TL, Dirig DM, Conway CM, Svensson C, Luo ZD, Isakson PC (2001) The acute antihyperalgesic action of nonsteroidal, anti-inflammatory drugs and release of spinal prostaglandin E2 is mediated by the inhibition of constitutive spinal cyclooxygenase-2 (COX-2) but not COX-1. J Neurosci 21:5847–5853

    CAS  PubMed  Google Scholar 

  49. Fu KY, Light AR, Maixner W (2000) Relationship between nociceptor activity, peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience 101:1127–1135

    Article  CAS  PubMed  Google Scholar 

  50. Fu KY, Light AR, Matsushima GK, Maixner W (1999) Microglial reactions after subcutaneous formalin injection into the rat hind paw. Brain Res 825:59–67

    Article  CAS  PubMed  Google Scholar 

  51. Sweitzer SM, Colburn RW, Rutkowski M, Deleo JA (1999) Acute peripheral inflammation induces moderate glial activation and spinal IL-1beta expression that correlates with pain behavior in the rat. Brain Res 829:209–221

    Article  CAS  PubMed  Google Scholar 

  52. Barragan-Iglesias P, Rocha-Gonzalez HI, Pineda-Farias JB, Murbartian J, Godinez-Chaparro B, Reinach PS, Cunha TM, Cunha FQ et al (2014) Inhibition of peripheral anion exchanger 3 decreases formalin-induced pain. Eur J Pharmacol 738:91–100

    Article  CAS  PubMed  Google Scholar 

  53. Garcia G, Martinez-Rojas VA, Rocha-Gonzalez HI, Granados-Soto V, Murbartian J (2014) Evidence for the participation of Ca(2+)-activated chloride channels in formalin-induced acute and chronic nociception. Brain Res 1579:35–44

    Article  CAS  PubMed  Google Scholar 

  54. Martinez-Rojas VA, Barragan-Iglesias P, Rocha-Gonzalez HI, Murbartian J, Granados-Soto V (2014) Role of TRPV1 and ASIC3 in formalin-induced secondary allodynia and hyperalgesia. Pharmacol Rep 66:964–971

    Article  CAS  PubMed  Google Scholar 

  55. Ma QP, Woolf CJ (1996) Progressive tactile hypersensitivity: an inflammation-induced incremental increase in the excitability of the spinal cord. Pain 67:97–106

    Article  CAS  PubMed  Google Scholar 

  56. Twining CM, Sloane EM, Milligan ED, Chacur M, Martin D, Poole S, Marsh H, Maier SF et al (2004) Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats. Pain 110:299–309

    Article  CAS  PubMed  Google Scholar 

  57. Watkins LR, Milligan ED, Maier SF (2001) Spinal cord glia: new players in pain. Pain 93:201–205

    Article  CAS  PubMed  Google Scholar 

  58. Koltzenburg M, Wall PD, Mcmahon SB (1999) Does the right side know what the left is doing? Trends Neurosci 22:122–127

    Article  CAS  PubMed  Google Scholar 

  59. Wang W, Wu SX, Wang YY, Liu XY, Li YQ (2003) 5-hydroxytryptamine1A receptor is involved in the bee venom induced inflammatory pain. Pain 106:135–142

    Article  CAS  PubMed  Google Scholar 

  60. Wu SX, Wang W, Li H, Wang YY, Feng YP, Li YQ (2010) The synaptic connectivity that underlies the noxious transmission and modulation within the superficial dorsal horn of the spinal cord. Prog Neurobiol 91:38–54

    Article  PubMed  Google Scholar 

  61. Bravo-Hernandez M, Cervantes-Duran C, Pineda-Farias JB, Barragan-Iglesias P, Lopez-Sanchez P, Granados-Soto V (2012) Role of peripheral and spinal 5-HT(3) receptors in development and maintenance of formalin-induced long-term secondary allodynia and hyperalgesia. Pharmacol Biochem Behav 101:246–257

    Article  CAS  PubMed  Google Scholar 

  62. Cervantes-Duran C, Pineda-Farias JB, Bravo-Hernandez M, Quinonez-Bastidas GN, Vidal-Cantu GC, Barragan-Iglesias P, Granados-Soto V (2013) Evidence for the participation of peripheral 5-HT(2)A, 5-HT(2)B, and 5-HT(2)C receptors in formalin-induced secondary mechanical allodynia and hyperalgesia. Neuroscience 232:169–181

    Article  CAS  PubMed  Google Scholar 

  63. Godinez-Chaparro B, Barragan-Iglesias P, Castaneda-Corral G, Rocha-Gonzalez HI, Granados-Soto V (2011) Role of peripheral 5-HT(4), 5-HT(6), and 5-HT(7) receptors in development and maintenance of secondary mechanical allodynia and hyperalgesia. Pain 152:687–697

    Article  CAS  PubMed  Google Scholar 

  64. Blakely RD, Berson HE, Fremeau RT Jr, Caron MG, Peek MM, Prince HK, Bradley CC (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70

    Article  CAS  PubMed  Google Scholar 

  65. Hariri AR, Holmes A (2006) Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci 10:182–191

    Article  PubMed  Google Scholar 

  66. Bowker RM, Westlund KN, Coulter JD (1981) Origins of serotonergic projections to the spinal cord in rat: an immunocytochemical-retrograde transport study. Brain Res 226:187–199

    Article  CAS  PubMed  Google Scholar 

  67. Hooten WM, Hartman WR, Black JL 3rd, Laures HJ, Walker DL (2013) Associations between serotonin transporter gene polymorphisms and heat pain perception in adults with chronic pain. BMC Med Genet 14:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Palm F, Mossner R, Chen Y, He L, Gerlach M, Bischofs S, Riederer P, Lesch KP et al (2008) Reduced thermal hyperalgesia and enhanced peripheral nerve injury after hind paw inflammation in mice lacking the serotonin-transporter. Eur J Pain 12:790–797

    Article  CAS  PubMed  Google Scholar 

  69. Vogel C, Mossner R, Gerlach M, Heinemann T, Murphy DL, Riederer P, Lesch KP, Sommer C (2003) Absence of thermal hyperalgesia in serotonin transporter-deficient mice. J Neurosci 23:708–715

    CAS  PubMed  Google Scholar 

  70. Hansen N, Uceyler N, Palm F, Zelenka M, Biko L, Lesch KP, Gerlach M, Sommer C (2011) Serotonin transporter deficiency protects mice from mechanical allodynia and heat hyperalgesia in vincristine neuropathy. Neurosci Lett 495:93–97

    Article  CAS  PubMed  Google Scholar 

  71. Kayser V, Elfassi IE, Aubel B, Melfort M, Julius D, Gingrich JA, Hamon M, Bourgoin S (2007) Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A−/−, 5-HT1B−/−, 5-HT2A−/−, 5-HT3A−/− and 5-HTT−/− knock-out male mice. Pain 130:235–248

    Article  CAS  PubMed  Google Scholar 

  72. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  CAS  PubMed  Google Scholar 

  73. Suzuki R, Rygh LJ, Dickenson AH (2004) Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci 25:613–617

    Article  CAS  PubMed  Google Scholar 

  74. Kou JP, Jin WF, Hua M, Yan YQ (2002) Effect of Danggui-Shaoyao-san (DSS) on three models of memory dysfunction. Chin Tradit Paten Med 24:191–193

    Google Scholar 

  75. Zeni AL, Zomkowski AD, Maraschin M, Rodrigues AL, Tasca CI (2012) Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: evidence for the involvement of the serotonergic system. Eur J Pharmacol 679:68–74

    Article  CAS  PubMed  Google Scholar 

  76. Qiu F, Zhong X, Mao Q, Huang Z (2013) The antidepressant-like effects of paeoniflorin in mouse models. Exp Ther Med 5:1113–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin T, Li K, Zhang FY, Zhang ZK, Light AR, Fu KY (2007) Dissociation of spinal microglia morphological activation and peripheral inflammation in inflammatory pain models. J Neuroimmunol 192:40–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Ping Kou, Alan David Kaye or Wen Wang.

Ethics declarations

Funding

This work was supported by the Natural Science Foundation of China (NO. 81271230), the intramural grant of form Open Project of the State Key Laboratory of Natural Medicines, China Pharmaceutical University (SKLNMKF201214) and the Natural Science Foundation of Shaanxi Province (NO. 2012JM4040).

Conflict of Interest

All the authors have viewed and agreed with this submission. The authors declare that they have no competing interests.

Ethical Approval

All experimental procedures received prior approval from the Animal Use and Care Committee for Research and Education of the Fourth Military Medical University (Xi’an, China) and the ethical guidelines to investigate experimental pain in conscious animals.

Additional information

Jun-Bin Yin, Ke-Cheng Zhou, Huang-Hui Wu and Wei Hu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Fluorescent photomicrographs show neuron could express FOS, but astrocyte or microglia. (A-A2) Colocalization of NeuN (green) and FOS (red), NeuN can be seen the marker for neurons. (B-B2) Expression of GFAP (green) and FOS (red), GFAP can be seen the marker for astrocytes. (C-C2) Expression of Iba1 (green) and FOS (red), Iba1 can be seen the marker for microglias. Scale bar = 20 μm in C2 (applies A-A2, B-B2, C-C1). (GIF 207 kb)

High Resolution Image (TIF 2582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, JB., Zhou, KC., Wu, HH. et al. Analgesic Effects of Danggui-Shaoyao-San on Various “Phenotypes” of Nociception and Inflammation in a Formalin Pain Model. Mol Neurobiol 53, 6835–6848 (2016). https://doi.org/10.1007/s12035-015-9606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9606-3

Keywords

Navigation