Skip to main content

Advertisement

Log in

SVCT2 Overexpression in Neuroblastoma Cells Induces Cellular Branching that is Associated with ERK Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Expression of the sodium and ascorbic acid (AA) cotransporter SVCT2 is induced during the period of cellular arborization and synaptic maturation of early postnatal (P1-P5) rat cerebral neurons. The physiological importance of the transporter for neurons is evidenced by the lethality and delayed neuronal differentiation detected in mice with ablation of SVCT2. The mechanism(s) involved in these defects and the role of SVCT2 in neuronal branching have not been determined yet. To address this, we used lentiviral expression vectors to increase the levels of SVCT2 in N2a cells and analyzed the effects on neurite formation. Expression of a fusion protein containing the human SVCT2wt and EYFP induced an increase in the number of MAP2+ neurites and filopodia in N2a cells. Overexpression of SVCT2 and treatment with AA promoted ERK1/2 phosphorylation. Our data suggest that enhanced expression of the high affinity AA transporter SVCT2, which tightly regulates intracellular AA concentrations, induces neuronal branching that then activates key signaling pathways that are involved in the differentiation and maturation of cortical neurons during postnatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

DMEM:

Dulbecco’s modified Eagle’s medium

EYFP:

Enhanced yellow fluorescent protein

FBS:

Fetal bovine serum

GLUTs:

Glucose transporters

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate-buffered saline

SDS:

Sodium dodecyl sulfate

SVCT:

Sodium and ascorbic acid cotransporter

References

  1. Yan J, Studer L, McKay RD (2001) Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J Neurochem 76:307–311

    Article  CAS  PubMed  Google Scholar 

  2. Lee JY, Chang MY, Park CH, Kim HY, Kim JH, Son H, Lee YS, Lee SH (2003) Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res 73:156–165. doi:10.1002/jnr.10647

    Article  CAS  PubMed  Google Scholar 

  3. Pastor P, Cisternas P, Salazar K, Silva-Alvarez C, Oyarce K, Jara N, Espinoza F, Martinez AD et al (2013) SVCT2 vitamin C transporter expression in progenitor cells of the postnatal neurogenic niche. Front Cell Neurosci 7:119. doi:10.3389/fncel.2013.00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goldenberg H, Schweinzer E (1994) Transport of vitamin C in animal and human cells. J Bioenerg Biomembr 26:359–367

    Article  CAS  PubMed  Google Scholar 

  5. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA (1999) A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 399:70–75. doi:10.1038/19986

    Article  CAS  PubMed  Google Scholar 

  6. Daruwala R, Song J, Koh WS, Rumsey SC, Levine M (1999) Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett 460:480–484

    Article  CAS  PubMed  Google Scholar 

  7. Nualart F, Mack L, Garcia A, Cisternas P, Bongarzone ER, Heitzer M, Jara N, Martinez F et al (2014) Vitamin C transporters, recycling and the bystander effect in the nervous system: SVCT2 versus gluts. J Stem Cell Res Ther 4:209. doi:10.4172/2157-7633.1000209

    PubMed  PubMed Central  Google Scholar 

  8. Castro M, Caprile T, Astuya A, Millan C, Reinicke K, Vera JC, Vasquez O, Aguayo LG et al (2001) High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J Neurochem 78:815–823

    Article  CAS  PubMed  Google Scholar 

  9. Garcia Mde L, Salazar K, Millan C, Rodriguez F, Montecinos H, Caprile T, Silva C, Cortes C et al (2005) Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia 50:32–47. doi:10.1002/glia.20133

    Article  PubMed  Google Scholar 

  10. Mun GH, Kim MJ, Lee JH, Kim HJ, Chung YH, Chung YB, Kang JS, Hwang YI et al (2006) Immunohistochemical study of the distribution of sodium-dependent vitamin C transporters in adult rat brain. J Neurosci Res 83:919–928. doi:10.1002/jnr.20751

    Article  CAS  PubMed  Google Scholar 

  11. Ulloa V, Garcia-Robles M, Martinez F, Salazar K, Reinicke K, Perez F, Godoy DF, Godoy AS et al (2013) Human choroid plexus papilloma cells efficiently transport glucose and vitamin C. J Neurochem 127:403–414. doi:10.1111/jnc.12295

    Article  CAS  PubMed  Google Scholar 

  12. Salazar K, Cerda G, Martinez F, Sarmiento JM, Gonzalez C, Rodriguez F, Garcia-Robles M, Tapia JC et al (2014) SVCT2 transporter expression is post-natally induced in cortical neurons and its function is regulated by its short isoform. J Neurochem 130:693–706. doi:10.1111/jnc.12793

    Article  CAS  PubMed  Google Scholar 

  13. Lutsenko EA, Carcamo JM, Golde DW (2004) A human sodium-dependent vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport. Mol Cell Biol 24:3150–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caprile T, Salazar K, Astuya A, Cisternas P, Silva-Alvarez C, Montecinos H, Millan C, de Los Angeles Garcia M et al (2009) The Na+-dependent L-ascorbic acid transporter SVCT2 expressed in brainstem cells, neurons, and neuroblastoma cells is inhibited by flavonoids. J Neurochem 108:563–577. doi:10.1111/j.1471-4159.2008.05788.x

    Article  CAS  PubMed  Google Scholar 

  15. Sotiriou S, Gispert S, Cheng J, Wang Y, Chen A, Hoogstraten-Miller S, Miller GF, Kwon O et al (2002) Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat Med 8:514–517. doi:10.1038/nm0502-514

    Article  CAS  PubMed  Google Scholar 

  16. Qiu S, Li L, Weeber EJ, May JM (2007) Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res 85:1046–1056. doi:10.1002/jnr.21204

    Article  CAS  PubMed  Google Scholar 

  17. Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23:209–216

    Article  CAS  PubMed  Google Scholar 

  18. Haapasalo A, Saarelainen T, Moshnyakov M, Arumae U, Kiema TR, Saarma M, Wong G, Castren E (1999) Expression of the naturally occurring truncated trkB neurotrophin receptor induces outgrowth of filopodia and processes in neuroblastoma cells. Oncogene 18:1285–1296. doi:10.1038/sj.onc.1202401

    Article  CAS  PubMed  Google Scholar 

  19. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Castro MA, Pozo M, Cortes C, Garcia Mde L, Concha II, Nualart F (2007) Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes. J Neurochem 102:773–782. doi:10.1111/j.1471-4159.2007.04631.x

    Article  CAS  PubMed  Google Scholar 

  22. Park S, Park CH, Hahm ER, Kim K, Kimler BF, Lee SJ, Park HK, Lee SH et al (2005) Activation of Raf1 and the ERK pathway in response to l-ascorbic acid in acute myeloid leukemia cells. Cell Signal 17:111–119. doi:10.1016/j.cellsig.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  23. Varadharaj S, Watkins T, Cardounel AJ, Garcia JG, Zweier JL, Kuppusamy P, Natarajan V, Parinandi NL (2005) Vitamin C-induced loss of redox-dependent viability in lung microvascular endothelial cells. Antioxid Redox Signal 7:287–300. doi:10.1089/ars.2005.7.287

    Article  CAS  PubMed  Google Scholar 

  24. Varadharaj S, Steinhour E, Hunter MG, Watkins T, Baran CP, Magalang U, Kuppusamy P, Zweier JL et al (2006) Vitamin C-induced activation of phospholipase D in lung microvascular endothelial cells: regulation by MAP kinases. Cell Signal 18:1396–1407. doi:10.1016/j.cellsig.2005.10.019

    Article  CAS  PubMed  Google Scholar 

  25. Arendt T, Gartner U, Seeger G, Barmashenko G, Palm K, Mittmann T, Yan L, Hummeke M et al (2004) Neuronal activation of Ras regulates synaptic connectivity. Eur J Neurosci 19:2953–2966. doi:10.1111/j.0953-816X.2004.03409.x

    Article  PubMed  Google Scholar 

  26. Gartner U, Alpar A, Behrbohm J, Heumann R, Arendt T (2005) Enhanced Ras activity promotes spine formation in synRas mice neocortex. Neuroreport 16:149–152

    Article  PubMed  Google Scholar 

  27. Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101. doi:10.1016/j.conb.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  28. Wu X, Itoh N, Taniguchi T, Nakanishi T, Tanaka K (2003) Requirement of calcium and phosphate ions in expression of sodium-dependent vitamin C transporter 2 and osteopontin in MC3T3-E1 osteoblastic cells. Biochim Biophys Acta 1641:65–70

    Article  CAS  PubMed  Google Scholar 

  29. Wu X, Itoh N, Taniguchi T, Nakanishi T, Tatsu Y, Yumoto N, Tanaka K (2003) Zinc-induced sodium-dependent vitamin C transporter 2 expression: potent roles in osteoblast differentiation. Arch Biochem Biophys 420:114–120

    Article  CAS  PubMed  Google Scholar 

  30. Wu X, Itoh N, Taniguchi T, Hirano J, Nakanishi T, Tanaka K (2004) Stimulation of differentiation in sodium-dependent vitamin C transporter 2 overexpressing MC3T3-E1 osteoblasts. Biochem Biophys Res Commun 317:1159–1164. doi:10.1016/j.bbrc.2004.03.158

    Article  CAS  PubMed  Google Scholar 

  31. Wu X, Zeng LH, Taniguchi T, Xie QM (2007) Activation of PKA and phosphorylation of sodium-dependent vitamin C transporter 2 by prostaglandin E2 promote osteoblast-like differentiation in MC3T3-E1 cells. Cell Death Differ 14:1792–1801. doi:10.1038/sj.cdd.4402190

    Article  CAS  PubMed  Google Scholar 

  32. Qiao H, May JM (2009) Macrophage differentiation increases expression of the ascorbate transporter (SVCT2). Free Radic Biol Med 46:1221–1232. doi:10.1016/j.freeradbiomed.2009.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M (2010) Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Methods 186:60–67. doi:10.1016/j.jneumeth.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  34. Lee KH, Yu DH, Lee YS (2009) Gene expression profiling of rat cerebral cortex development using cDNA microarrays. Neurochem Res 34:1030–1038. doi:10.1007/s11064-008-9867-6

    Article  CAS  PubMed  Google Scholar 

  35. Castro T, Low M, Salazar K, Montecinos H, Cifuentes M, Yanez AJ, Slebe JC, Figueroa CD et al (2008) Differential distribution of the sodium-vitamin C cotransporter-1 along the proximal tubule of the mouse and human kidney. Kidney Int 74:1278–1286. doi:10.1038/ki.2008.329

    Article  CAS  PubMed  Google Scholar 

  36. Mimori K, Komaki M, Iwasaki K, Ishikawa I (2007) Extracellular signal-regulated kinase 1/2 is involved in ascorbic acid-induced osteoblastic differentiation in periodontal ligament cells. J Periodontol 78:328–334. doi:10.1902/jop.2007.060223

    Article  PubMed  Google Scholar 

  37. Temu TM, Wu KY, Gruppuso PA, Phornphutkul C (2010) The mechanism of ascorbic acid-induced differentiation of ATDC5 chondrogenic cells. Am J Physiol Endocrinol Metab 299:E325–E334. doi:10.1152/ajpendo.00145.2010

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan Y, Zeng W, Song S, Zhang F, He W, Liang W, Niu Z (2013) Vitamin C induces periodontal ligament progenitor cell differentiation via activation of ERK pathway mediated by PELP1. Protein Cell 4:620–627. doi:10.1007/s13238-013-3030-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76:1–10

    Article  CAS  PubMed  Google Scholar 

  40. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038. doi:10.1126/science.1067020

    Article  CAS  PubMed  Google Scholar 

  41. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183. doi:10.1038/nrn1346

    Article  CAS  PubMed  Google Scholar 

  42. Yu DH, Lee KH, Lee JY, Kim S, Shin DM, Kim JH, Lee YS, Lee YS et al (2004) Changes of gene expression profiles during neuronal differentiation of central nervous system precursors treated with ascorbic acid. J Neurosci Res 78:29–37. doi:10.1002/jnr.20220

    Article  CAS  PubMed  Google Scholar 

  43. Shin DM, Ahn JI, Lee KH, Lee YS, Lee YS (2004) Ascorbic acid responsive genes during neuronal differentiation of embryonic stem cells. Neuroreport 15:1959–1963

    Article  CAS  PubMed  Google Scholar 

  44. Heo J, Campbell SL (2006) Ras regulation by reactive oxygen and nitrogen species. Biochemistry 45:2200–2210. doi:10.1021/bi051872m

    Article  CAS  PubMed  Google Scholar 

  45. Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445. doi:10.1016/j.tins.2005.06.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a FONDECYT grant, 1140477, and a CONICYT PIA ECM-12 grant (both to Francisco Nualart) and an NIH grant (RNS065808A) to Ernesto R. Bongarzone. The funders had no role in study design, data collection and analysis, the decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Nualart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

SVCT2 lentiviral overexpression in N2a cells. Vectors used to produce the lentiviral particles in the HEK293T cell line (A). Western blot analysis of EGFP expression in total protein extracts obtained from non-transduced (lane 1), EGFP-transduced (lane 2) and hSVCT2-EYFP-transduced (lane 3) cells (B). Confocal microscopy analysis in cells transduced with hSVCT2-EYFP lentivirus, showing the outgrowth of processes (arrows) and filopodia (arrowhead). Nuclei were stained with TOPRO-3 (blue channel) (D-F). (DOCX 1484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar, K., Martínez, M., Ulloa, V. et al. SVCT2 Overexpression in Neuroblastoma Cells Induces Cellular Branching that is Associated with ERK Signaling. Mol Neurobiol 53, 6668–6679 (2016). https://doi.org/10.1007/s12035-015-9553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9553-z

Keywords

Navigation