Skip to main content
Log in

Cobalt Protoporphyrin Upregulates Cyclooxygenase-2 Expression Through a Heme Oxygenase-Independent Mechanism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cobalt protoporphyrin (CoPP) is a potent HO-1 inducer and generally known to be an antioxidant in various cell types. Little is known about the CoPP-induced cyclooxygenase-2 (COX-2) expression and its downstream signaling in microglial cells. In current study, CoPP caused concentration- and time-dependent increases in COX-2 expression in microglial cells. Furthermore, activation of apoptosis signal-regulating kinase (ASK) 1/MAP kinase involved in CoPP-induced COX-2 expression in microglia. CoPP also induced P2X7 receptor activation, and treatment of P2X7 inhibitors effectively reduced CoPP-induced COX-2 expression. Protein inhibitor of activated STAT (PIAS) 1 is reported to be involved in modulating anti-inflammatory response through negative regulation of transcription factors. Interestingly, treatment with CoPP markedly induced PIAS1 degradation which is regulated by PI3K, Akt, and glycogen synthase kinase 3α/β (GSK3α/β) signaling pathways. These results suggest that CoPP induces COX-2 expression through activating P2X7 receptors and ASK1/MAP kinases as well as PIAS1 degradation signaling pathways. Our study provides a new insight into the regulatory effect of CoPP on neuroinflammation in microglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin HY, Huang BR, Yeh WL, Lee CH, Huang SS, Lai CH, Lin H, Lu DY (2014) Antineuroinflammatory effects of lycopene via activation of adenosine monophosphate-activated protein kinase-alpha1/heme oxygenase-1 pathways. Neurobiol Aging 35(1):191–202. doi:10.1016/j.neurobiolaging.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  2. Samantaray S, Knaryan VH, Shields DC, Banik NL (2013) Critical role of calpain in spinal cord degeneration in Parkinson's disease. J Neurochem 127(6):880–890. doi:10.1111/jnc.12374

    Article  CAS  PubMed  Google Scholar 

  3. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410(6827):471–475. doi:10.1038/35068566

    Article  CAS  PubMed  Google Scholar 

  4. Lin HY, Tang CH, Chen JH, Chuang JY, Huang SM, Tan TW, Lai CH, Lu DY (2011) Peptidoglycan induces interleukin-6 expression through the TLR2 receptor, JNK, c-Jun, and AP-1 pathways in microglia. J Cell Physiol 226(6):1573–1582. doi:10.1002/jcp.22489

    Article  CAS  PubMed  Google Scholar 

  5. Brown JR, DuBois RN (2005) COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol Off J Am Soc Clin Oncol 23(12):2840–2855. doi:10.1200/JCO.2005.09.051

    Article  CAS  Google Scholar 

  6. Temel SG, Kahveci Z (2009) Cyclooxygenase-2 expression in astrocytes and microglia in human oligodendroglioma and astrocytoma. J Mol Histol 40(5–6):369–377. doi:10.1007/s10735-009-9250-1

    Article  CAS  PubMed  Google Scholar 

  7. Ejima K, Layne MD, Carvajal IM, Kritek PA, Baron RM, Chen YH, Vom Saal J, Levy BD, Yet SF, Perrella MA (2003) Cyclooxygenase-2-deficient mice are resistant to endotoxin-induced inflammation and death. FASEB J Off Publ Fed Am Soc Exp Biol 17(10):1325–1327. doi:10.1096/fj.02-1078fje

    CAS  Google Scholar 

  8. Feng ZH, Wang TG, Li DD, Fung P, Wilson BC, Liu B, Ali SF, Langenbach R, Hong JS (2002) Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1, 2, 3, 6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci Lett 329(3):354–358

    Article  CAS  PubMed  Google Scholar 

  9. Bartels AL, Leenders KL (2010) Cyclooxygenase and neuroinflammation in Parkinson's disease neurodegeneration. Curr Neuropharmacol 8(1):62–68. doi:10.2174/157015910790909485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lakkisto P, Siren JM, Kyto V, Forsten H, Laine M, Pulkki K, Tikkanen I (2011) Heme oxygenase-1 induction protects the heart and modulates cellular and extracellular remodelling after myocardial infarction in rats. Exp Biol Med 236(12):1437–1448. doi:10.1258/ebm.2011.011148

    Article  CAS  Google Scholar 

  11. Fu Y, Yang MS, Jiang J, Ganesh T, Joe E, Dingledine R (2015) EP2 Receptor Signaling Regulates Microglia Death. Mol Pharmacol 88(1):161–170. doi:10.1124/mol.115.098202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kang CH, Choi YH, Moon SK, Kim WJ, Kim GY (2013) Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-kappaB pathway and activating the Nrf2-dependent HO-1 pathway. Int Immunopharmacol 17(3):808–813. doi:10.1016/j.intimp.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  13. Chuang JY, Chang PC, Shen YC, Lin C, Tsai CF, Chen JH, Yeh WL, Wu LH, Lin HY, Liu YS, Lu DY (2014) Regulatory effects of fisetin on microglial activation. Molecules 19(7):8820–8839. doi:10.3390/molecules19078820

    Article  PubMed  Google Scholar 

  14. Hervera A, Leanez S, Motterlini R, Pol O (2013) Treatment with carbon monoxide-releasing molecules and an HO-1 inducer enhances the effects and expression of micro-opioid receptors during neuropathic pain. Anesthesiology 118(5):1180–1197. doi:10.1097/ALN.0b013e318286d085

    Article  CAS  PubMed  Google Scholar 

  15. Hervera A, Leanez S, Negrete R, Motterlini R, Pol O (2012) Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesis in mice. PLoS One 7(8):e43693. doi:10.1371/journal.pone.0043693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun MH, Pang JH, Chen SL, Han WH, Ho TC, Chen KJ, Kao LY, Lin KK, Tsao YP (2010) Retinal protection from acute glaucoma-induced ischemia-reperfusion injury through pharmacologic induction of heme oxygenase-1. Invest Ophthalmol Vis Sci 51(9):4798–4808. doi:10.1167/iovs.09-4086

    Article  PubMed  Google Scholar 

  17. Shih RH, Yang CM (2010) Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced cyclooxygenase-2 expression in mouse brain endothelial cells. J Neuroinflammation 7:86. doi:10.1186/1742-2094-7-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang B, Yan L, Zhou P, Dong Z, Feng S, Liu K, Gong Z (2013) CHP1002, a novel andrographolide derivative, inhibits pro-inflammatory inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW264.7 macrophages via up-regulation of heme oxygenase-1 expression. Int Immunopharmacol 15(2):289–295. doi:10.1016/j.intimp.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  19. Lu DY, Huang BR, Yeh WL, Lin HY, Huang SS, Liu YS, Kuo YH (2013) Anti-neuroinflammatory effect of a novel caffeamide derivative, KS370G, in microglial cells. Mol Neurobiol 48(3):863–874. doi:10.1007/s12035-013-8474-y

    Article  CAS  PubMed  Google Scholar 

  20. Lin HY, Yeh WL, Huang BR, Lin C, Lai CH, Lin H, Lu DY (2012) Desipramine protects neuronal cell death and induces heme oxygenase-1 expression in Mes23.5 dopaminergic neurons. PLoS One 7(11):e50138. doi:10.1371/journal.pone.0050138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu DY, Chen JH, Tan TW, Huang CY, Yeh WL, Hsu HC (2013) Resistin protects against 6-hydroxydopamine-induced cell death in dopaminergic-like MES23.5 cells. J Cell Physiol 228(3):563–571. doi:10.1002/jcp.24163

    Article  CAS  PubMed  Google Scholar 

  22. Min KJ, Kim JH, Jou I, Joe EH (2008) Adenosine induces hemeoxygenase-1 expression in microglia through the activation of phosphatidylinositol 3-kinase and nuclear factor E2-related factor 2. Glia 56(9):1028–1037. doi:10.1002/glia.20676

    Article  PubMed  Google Scholar 

  23. Fukuda K, Richmon JD, Sato M, Sharp FR, Panter SS, Noble LJ (1996) Induction of heme oxygenase-1 (HO-1) in glia after traumatic brain injury. Brain Res 736(1–2):68–75

    Article  CAS  PubMed  Google Scholar 

  24. Wang XM, Kim HP, Nakahira K, Ryter SW, Choi AM (2009) The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1. J Immunol 182(6):3809–3818. doi:10.4049/jimmunol.0712437

    Article  CAS  PubMed  Google Scholar 

  25. Huang BR, Tsai CF, Lin HY, Tseng WP, Huang SS, Wu CR, Lin C, Yeh WL, Lu DY (2013) Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid. Toxicol Appl Pharmacol 269(1):43–50. doi:10.1016/j.taap.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  26. Lin HY, Tang CH, Chen YH, Wei IH, Chen JH, Lai CH, Lu DY (2010) Peptidoglycan enhances proinflammatory cytokine expression through the TLR2 receptor, MyD88, phosphatidylinositol 3-kinase/AKT and NF-kappaB pathways in BV-2 microglia. Int Immunopharmacol 10(8):883–891. doi:10.1016/j.intimp.2010.04.0264

  27. Zhang R, He X, Liu W, Lu M, Hsieh JT, Min W (2003) AIP1 mediates TNF-alpha-induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. J Clin Invest 111(12):1933–1943. doi:10.1172/JCI17790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gadeock S, Tran JN, Georgiou JG, Jalilian I, Taylor RM, Wiley JS, Sluyter R (2010) TGF-beta1 prevents up-regulation of the P2X7 receptor by IFN-gamma and LPS in leukemic THP-1 monocytes. Biochim Biophys Acta 1798(11):2058–2066. doi:10.1016/j.bbamem.2010.07.022

    Article  CAS  PubMed  Google Scholar 

  29. Bindu S, Mazumder S, Dey S, Pal C, Goyal M, Alam A, Iqbal MS, Sarkar S, Azhar Siddiqui A, Banerjee C, Bandyopadhyay U (2013) Nonsteroidal anti-inflammatory drug induces proinflammatory damage in gastric mucosa through NF-kappaB activation and neutrophil infiltration: Anti-inflammatory role of heme oxygenase-1 against nonsteroidal anti-inflammatory drug. Free Radic Biol Med 65C:456–467. doi:10.1016/j.freeradbiomed.2013.07.027

    Article  Google Scholar 

  30. Wang S, Avery JE, Hannafon BN, Lind SE, Ding WQ (2013) Zinc protoporphyrin suppresses cancer cell viability through a heme oxygenase-1-independent mechanism: the involvement of the Wnt/beta-catenin signaling pathway. Biochem Pharmacol 85(11):1611–1618. doi:10.1016/j.bcp.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  31. Rattan S, Chakder S (2000) Influence of heme oxygenase inhibitors on the basal tissue enzymatic activity and smooth muscle relaxation of internal anal sphincter. J Pharmacol Exp Ther 294(3):1009–1016

    CAS  PubMed  Google Scholar 

  32. Chrovian CC, Rech JC, Bhattacharya A, Letavic MA (2014) P2X7 Antagonists as Potential Therapeutic Agents for the Treatment of CNS Disorders. Prog Med Chem 53:65–100. doi:10.1016/B978-0-444-63380-4.00002-0

    Article  CAS  PubMed  Google Scholar 

  33. Chotjumlong P, Bolscher JG, Nazmi K, Reutrakul V, Supanchart C, Buranaphatthana W, Krisanaprakornkit S (2013) Involvement of the P2X7 purinergic receptor and c-Jun N-terminal and extracellular signal-regulated kinases in cyclooxygenase-2 and prostaglandin E2 induction by LL-37. J Innate Immun 5(1):72–83. doi:10.1159/000342928

    Article  CAS  PubMed  Google Scholar 

  34. Ni J, Wang P, Zhang J, Chen W, Gu L (2013) Silencing of the P2X(7) receptor enhances amyloid-beta phagocytosis by microglia. Biochem Biophys Res Commun 434(2):363–369. doi:10.1016/j.bbrc.2013.03.079

    Article  CAS  PubMed  Google Scholar 

  35. Diaz-Hernandez JI, Gomez-Villafuertes R, Leon-Otegui M, Hontecillas-Prieto L, Del Puerto A, Trejo JL, Lucas JJ, Garrido JJ, Gualix J, Miras-Portugal MT, Diaz-Hernandez M (2012) In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer's disease through GSK3beta and secretases. Neurobiol Aging 33(8):1816–1828. doi:10.1016/j.neurobiolaging.2011.09.040

    Article  CAS  PubMed  Google Scholar 

  36. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275(5296):90–94

    Article  CAS  PubMed  Google Scholar 

  37. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16(11):1345–1355. doi:10.1101/gad.992302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Niso-Santano M, Bravo-San Pedro JM, Gomez-Sanchez R, Climent V, Soler G, Fuentes JM, Gonzalez-Polo RA (2011) ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress. Toxicol Sci Off J Soc Toxicol 119(1):156–168. doi:10.1093/toxsci/kfq313

    Article  CAS  Google Scholar 

  39. Song J, Park KA, Lee WT, Lee JE (2014) Apoptosis signal regulating kinase 1 (ASK1): potential as a therapeutic target for Alzheimer's disease. Int J Mol Sci 15(2):2119–2129. doi:10.3390/ijms15022119

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mnich SJ, Blanner PM, Hu LG, Shaffer AF, Happa FA, O'Neil S, Ukairo O, Weiss D, Welsh E, Storer C, Mbalaviele G, Ichijo H, Monahan JB, Hardy MM, Eda H (2010) Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. Int Immunopharmacol 10(10):1170–1176. doi:10.1016/j.intimp.2010.06.023

    Article  CAS  PubMed  Google Scholar 

  41. Guo X, Harada C, Namekata K, Matsuzawa A, Camps M, Ji H, Swinnen D, Jorand-Lebrun C, Muzerelle M, Vitte PA, Ruckle T, Kimura A, Kohyama K, Matsumoto Y, Ichijo H, Harada T (2010) Regulation of the severity of neuroinflammation and demyelination by TLR-ASK1-p38 pathway. EMBO Mol Med 2(12):504–515. doi:10.1002/emmm.201000103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee KW, Zhao X, Im JY, Grosso H, Jang WH, Chan TW, Sonsalla PK, German DC, Ichijo H, Junn E, Mouradian MM (2012) Apoptosis signal-regulating kinase 1 mediates MPTP toxicity and regulates glial activation. PLoS One 7(1):e29935. doi:10.1371/journal.pone.0029935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nomura K, Lee M, Banks C, Lee G, Morris BJ (2013) An ASK1-p38 signalling pathway mediates hydrogen peroxide-induced toxicity in NG108-15 neuronal cells. Neurosci Lett 549:163–167. doi:10.1016/j.neulet.2013.05.045

    Article  CAS  PubMed  Google Scholar 

  44. Hu X, Weng Z, Chu CT, Zhang L, Cao G, Gao Y, Signore A, Zhu J, Hastings T, Greenamyre JT, Chen J (2011) Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J neurosci Off J Soc Neurosci 31(1):247–261. doi:10.1523/JNEUROSCI.4589-10.2011

    Article  CAS  Google Scholar 

  45. Hsu MJ, Hsu CY, Chen BC, Chen MC, Ou G, Lin CH (2007) Apoptosis signal-regulating kinase 1 in amyloid beta peptide-induced cerebral endothelial cell apoptosis. J Neurosci Off J Soc Neurosci 27(21):5719–5729. doi:10.1523/JNEUROSCI.1874-06.2007

    Article  CAS  Google Scholar 

  46. Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A 97(22):11960–11965. doi:10.1073/pnas.220413597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stambolic V, Woodgett JR (1994) Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 303(Pt 3):701–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lakshmanan J, Zhang B, Nweze IC, Du Y, Harbrecht BG (2015) Glycogen Synthase Kinase 3 Regulates IL-1beta Mediated iNOS Expression in Hepatocytes by Down-Regulating c-Jun. J Cell Biochem 116(1):133–141. doi:10.1002/jcb.24951

    Article  CAS  PubMed  Google Scholar 

  49. Rokutanda S, Fujita T, Kanatani N, Yoshida CA, Komori H, Liu W, Mizuno A, Komori T (2009) Akt regulates skeletal development through GSK3, mTOR, and FoxOs. Dev Biol 328(1):78–93. doi:10.1016/j.ydbio.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  50. Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6(8):777–784. doi:10.1038/ni1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cremer TJ, Shah P, Cormet-Boyaka E, Valvano MA, Butchar JP, Tridandapani S (2011) Akt-mediated proinflammatory response of mononuclear phagocytes infected with Burkholderia cenocepacia occurs by a novel GSK3beta-dependent, IkappaB kinase-independent mechanism. J Immunol 187(2):635–643. doi:10.4049/jimmunol.1003034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng YL, Wang CY, Huang WC, Tsai CC, Chen CL, Shen CF, Chi CY, Lin CF (2009) Staphylococcus aureus induces microglial inflammation via a glycogen synthase kinase 3beta-regulated pathway. Infect Immun 77(9):4002–4008. doi:10.1128/IAI.00176-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A 95(18):10626–10631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5(8):593–605. doi:10.1038/nri1667

    Article  CAS  PubMed  Google Scholar 

  55. Liu B, Yang Y, Chernishof V, Loo RR, Jang H, Tahk S, Yang R, Mink S, Shultz D, Bellone CJ, Loo JA, Shuai K (2007) Proinflammatory stimuli induce IKKalpha-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell 129(5):903–914. doi:10.1016/j.cell.2007.03.056

    Article  CAS  PubMed  Google Scholar 

  56. Liao J, Fu Y, Shuai K (2000) Distinct roles of the NH2- and COOH-terminal domains of the protein inhibitor of activated signal transducer and activator of transcription (STAT) 1 (PIAS1) in cytokine-induced PIAS1-Stat1 interaction. Proc Natl Acad Sci U S A 97(10):5267–5272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rogers RS, Horvath CM, Matunis MJ (2003) SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J Biol Chem 278(32):30091–30097. doi:10.1074/jbc.M301344200

    Article  CAS  PubMed  Google Scholar 

  58. Song L, Bhattacharya S, Yunus AA, Lima CD, Schindler C (2006) Stat1 and SUMO modification. Blood 108(10):3237–3244. doi:10.1182/blood-2006-04-020271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ungureanu D, Vanhatupa S, Gronholm J, Palvimo JJ, Silvennoinen O (2005) SUMO-1 conjugation selectively modulates STAT1-mediated gene responses. Blood 106(1):224–226. doi:10.1182/blood-2004-11-4514

    Article  CAS  PubMed  Google Scholar 

  60. Sharrocks AD (2006) PIAS proteins and transcriptional regulation--more than just SUMO E3 ligases? Genes Dev 20(7):754–758. doi:10.1101/gad.1421006

    Article  CAS  PubMed  Google Scholar 

  61. Schmidt D, Muller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci U S A 99(5):2872–2877. doi:10.1073/pnas.052559499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liang M, Melchior F, Feng XH, Lin X (2004) Regulation of Smad4 sumoylation and transforming growth factor-beta signaling by protein inhibitor of activated STAT1. J Biol Chem 279(22):22857–22865. doi:10.1074/jbc.M401554200

    Article  CAS  PubMed  Google Scholar 

  63. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86(2):583–650. doi:10.1152/physrev.00011.2005

    Article  CAS  PubMed  Google Scholar 

  64. Shih RH, Cheng SE, Tung WH, Yang CM (2010) Up-regulation of heme oxygenase-1 protects against cold injury-induced brain damage: a laboratory-based study. J Neurotrauma 27(8):1477–1487. doi:10.1089/neu.2009.1201

    Article  PubMed  Google Scholar 

  65. Galbraith RA, Kappas A (1989) Regulation of food intake and body weight by cobalt porphyrins in animals. Proc Natl Acad Sci U S A 86(19):7653–7657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith TJ, Drummond GS, Kappas A (1987) Cobalt-protoporphyrin suppresses thyroid and testicular hormone concentrations in rat serum: a novel action of this synthetic heme analogue. Pharmacology 34(1):9–16

    Article  CAS  PubMed  Google Scholar 

  67. Muhoberac BB, Hanew T, Halter S, Schenker S (1989) A model of cytochrome P-450-centered hepatic dysfunction in drug metabolism induced by cobalt-protoporphyrin administration. Biochem Pharmacol 38(22):4103–4113

    Article  CAS  PubMed  Google Scholar 

  68. Schmidt R (2007) Cobalt protoporphyrin as a potential therapeutic agent? FASEB J Off Publ Fed Am Soc Exp Biol 21(11):2639. doi:10.1096/fj.07-0904ltr, author reply 2640

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from the National Science Council (NSC 102-2320-B-039-051-MY3, NSC 102-2320-B-039-026-MY3, NSC 103-2811-B-039-021, and NSC 104-2320-B-468-002), China Medical University (CMU102-ASIA-24), and Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence (MOHW104-TDU-B-212-113002).

Conflict of Interest

The authors report no biomedical financial interests or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dah-Yuu Lu.

Additional information

Hsiao-Yun Lin and Chon-Haw Tsai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HY., Tsai, CH., Lin, C. et al. Cobalt Protoporphyrin Upregulates Cyclooxygenase-2 Expression Through a Heme Oxygenase-Independent Mechanism. Mol Neurobiol 53, 4497–4508 (2016). https://doi.org/10.1007/s12035-015-9376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9376-y

Keywords

Navigation