Skip to main content

Advertisement

Log in

Protection of the Crayfish Mechanoreceptor Neuron and Glial Cells from Photooxidative Injury by Modulators of Diverse Signal Transduction Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oxidative stress is the reason of diverse neuropathological processes. Photodynamic therapy (PDT), an effective inducer of oxidative stress, is used for cancer treatment, including brain tumors. We studied the role of various signaling pathways in photodynamic injury and protection of single neurons and satellite glial cells in the isolated crayfish mechanoreceptor. It was photosensitized with alumophthalocyanine Photosens in the presence of inhibitors or activators of various signaling proteins. PDT eliminated neuronal activity and killed neurons and glial cells. Inhibitory analysis showed the involvement of protein kinases Akt, glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinases 1 and 2 (MEK1/2), calmodulin, calmodulin-dependent kinase II (CaMKII), adenylate cyclase, and nuclear factor NF-κB in PDT-induced necrosis of neurons. Nitric oxide (NO) and glial cell-derived neurotrophic factor (GDNF) reduced neuronal necrosis. In glial cells, protein kinases Akt, calmodulin, and CaMKII; protein kinases C and G, adenylate cyclase, and p38; and nuclear transcription factor NF-κB also mediated PDT-induced necrosis. In contrast, NO and neurotrophic factors nerve growth factor (NGF) and GDNF demonstrated anti-necrotic activity. Phospholipase Cγ, protein kinase C, GSK-3β, mTOR, NF-κB, mitochondrial permeability transition pores, and NO synthase mediated PDT-induced apoptosis of glial cells, whereas protein kinase A, tyrosine phosphatases, and neurotrophic factors NGF, GDNF, and neurturin were involved in protecting glial cells from photoinduced apoptosis. Signaling pathways that control cell survival and death differed in neurons and glia. Inhibitors or activators of some signaling pathways may be used as potential protectors of neurons and glia from photooxidative stress and following death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bahr M (2004) Neuroprotection. Models, mechanisms and therapies. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Gomperts B, Kramer I, Tatham P (2009) Signal transduction. Elsevier, Academic Press, Amsterdam

    Google Scholar 

  3. Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Progr Neurobiol 75:207–246

    Article  CAS  Google Scholar 

  4. Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74. doi:10.2174/157015909787602823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Li J, O W, Li W, Jiang ZG, Ghanbari HA (2013) Oxidative stress and neurodegenerative disorders. Int J Mol Sci 14:24438–24475. doi:10.3390/ijms141224438

    Article  PubMed Central  PubMed  Google Scholar 

  7. Pohanka M (2013) Alzheimer’s disease and oxidative stress: a review. Curr Med Chem 21:356–364

    Article  Google Scholar 

  8. Melo A, Monteiro L, Lima RM, Oliveira DM, Cerqueira MD, El-Bachá RS (2011) Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxid Med Cell Longev 467180:14. doi:10.1155/2011/467180

  9. Morale MC, Serra PA, L’episcopo F, Tirolo C, Caniglia S, Testa N et al (2006) Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138(3):869–878

    Article  CAS  PubMed  Google Scholar 

  10. L’Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B (2010) Glia as a turning point in the therapeutic strategy of Parkinson’s disease. CNS Neurol Disord Drug Targets 9(3):349–372

    Article  PubMed  Google Scholar 

  11. Fernandez-Fernandez S, Almeida A, Bolaños JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443(1):3–11. doi:10.1042/BJ20111943

    Article  CAS  PubMed  Google Scholar 

  12. Barreto GE, Gonzalez J, Capani F, Morales L (2012) Neuroprotective agents in brain injury: a partial failure? Int J Neurosci 122(5):223–226. doi:10.3109/00207454.2011.648292

    Article  CAS  PubMed  Google Scholar 

  13. Dougherty T, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–903

    Article  CAS  PubMed  Google Scholar 

  14. Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293

    Article  CAS  Google Scholar 

  15. Uzdensky AB (2010) Cellular and molecular mechanisms of photodynamic therapy. Nauka, Sankt-Petersburg

    Google Scholar 

  16. Eljamel S (2010) Photodynamic applications in brain tumors: a comprehensive review of the literature. Photodiagn Photodyn Ther 7(2):76–85. doi:10.1016/j.pdpdt.2010.02.002

    Article  CAS  Google Scholar 

  17. Purali N (2005) Structure and function relationship in the abdominal stretch receptor organs of the crayfish. J Comp Neurol 488:369–383

    Article  PubMed  Google Scholar 

  18. Tao-Cheng JH, Hirosawa K, Nakajima Y (1981) Ultrastructure of the crayfish stretch receptor in relation to its function. J Comp Neurol 200:1–21

    Article  CAS  PubMed  Google Scholar 

  19. Eyzaguirre C, Kuffler SW (1955) Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J Gen Physiol 39:87–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kuffler SW, Eyzaguirre C (1955) Synaptic inhibition in an isolated nerve cell. J Gen Physiol 39:155–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rydqvist B, Lin JH, Sand P, Swerup C (2007) Mechanotransduction and the crayfish stretch receptor. Physiol Behav 92:21–28

    Article  CAS  PubMed  Google Scholar 

  22. Fedorenko GM, Uzdensky AB (2009) Ultrastructure of neuroglial contacts in crayfish stretch receptor. Cell Tissue Res 337:477–490. doi:10.1007/s00441-009-0825-7

    Article  PubMed  Google Scholar 

  23. Giacobini EE (1969) Chemical studies of individual neurons. II Invertebrate nerve cell. Neurosci Res (NY) 2:111–202

    CAS  Google Scholar 

  24. Fedorenko GM, Uzdensky AB (2008) Dynamics of ultrastructural changes in the isolated crayfish mechanoreceptor neuron under photodynamic impact. J Neurosci Res 86:1409–1416

    Article  CAS  PubMed  Google Scholar 

  25. Uzdensky AB, Savransky VV (1997) Single neuron response to pulse-periodic laser microirradiation. Action spectra, and two-photon effect. J Photochem Photobiol B Biol 39(3):224–228

    Article  CAS  Google Scholar 

  26. Uzdensky AB (1993) Laser microirradiation of single nerve cell. Proc SPIE 1882:254–267. doi:10.1117/12.147682

    Article  Google Scholar 

  27. Komandirov MA, Knyazeva EA, Fedorenko YP, Rudkovskii MV, Stetsurin DA, Uzdensky AB (2011) On the role of phosphatidylinositol 3-kinase, protein kinase B/Akt, and glycogen synthase kinase-3β in photodynamic injury of crayfish neurons and glial cells. J Mol Neurosci 45:229–235. doi:10.1007/s12031-011-9499-1

    Article  CAS  PubMed  Google Scholar 

  28. Kovaleva VD, Berezhnaya EV, Komandirov MA, Rudkovskii MV, Uzdensky AB (2013) Involvement of nitric oxide in photodynamic injury of neurons and glial cells. Nitric Oxide 29:46–52

    Article  CAS  PubMed  Google Scholar 

  29. Lobanov AV, Uzdensky AB (2009) Protection of crayfish glial cells but not neurons from photodynamic injury by nerve growth factor. J Mol Neurosci 39:308–319. doi:10.1007/s12031-009-9199-2

    Article  CAS  PubMed  Google Scholar 

  30. Uzdensky AB, Bragin DE, Kolosov MS, Dergacheva OY, Fedorenko GM, Zhavoronkova AA (2002) Photodynamic inactivation of isolated crayfish mechanoreceptor neuron: different death modes under different photosensitizer concentrations. Photochem Photobiol 76:431–437

    Article  CAS  PubMed  Google Scholar 

  31. Uzdensky A, Kolosov M, Bragin D, Dergacheva O, Vanzha O, Oparina L (2005) Involvement of adenylate cyclase and tyrosine kinase signaling pathways in response of crayfish stretch receptor neuron and satellite glia cell to photodynamic treatment. Glia 49:339–348

    Article  PubMed  Google Scholar 

  32. Uzdensky A, Komandirov M, Fedorenko G, Lobanov A (2013) Protection effect of GDNF and neurturin on photosensitized crayfish neurons and glial cells. J Mol Neurosci 49(3):480–490. doi:10.1007/s12031-012-9858-6

    Article  CAS  PubMed  Google Scholar 

  33. Uzdensky A, Lobanov A, Bibov M, Petin Y (2007) Involvement of Ca2+ and cyclic adenosine monophosphate-mediated signaling pathways in photodynamic injury of isolated crayfish neuron and satellite glial cells. J Neurosci Res 85:860–870

    Article  CAS  PubMed  Google Scholar 

  34. Neginskaya MA, Berezhnaya EV, Kovaleva VD, Komandirov MA, Rudkovskii MV, Uzdensky AB (2013) Participation of transcription factor NF-κB in responses of neurons and glial cells to photodynamic impact. Proc XVI Intern Conf On Neurocybernetics Rostov On Don 1:36–39

    Google Scholar 

  35. Newton AC, Johnson JE (1998) Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta 1376:155–172

    Article  CAS  PubMed  Google Scholar 

  36. Benn SC, Woolf CJ (2004) Adult neuron survival strategies—slamming on the brakes. Nat Rev Neurosci 5:686–700

    Article  CAS  PubMed  Google Scholar 

  37. Chao MV, Rajagopal R, Lee FS (2006) Neurotrophin signaling in health and disease. Clin Sci 110:167–173

    Article  CAS  PubMed  Google Scholar 

  38. Duman RS (2009) Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. Dialogues Clin Neurosci 11(3):239–255

    PubMed Central  PubMed  Google Scholar 

  39. Skaper SD (2012) The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol 846:1–12. doi:10.1007/978-1-61779-536-7_1

    Article  CAS  PubMed  Google Scholar 

  40. Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281

    Article  CAS  PubMed  Google Scholar 

  41. Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68:647–654

    Article  CAS  PubMed  Google Scholar 

  42. Pellitteri R, Russo A, Stanzani S (2006) Schwann cell: a source of neurotrophic activity on cortical glutamatergic neurons in culture. Brain Res 1069:139–144

    Article  CAS  PubMed  Google Scholar 

  43. Saavedra A, Baltazar G, Santos P, Carvalho CM, Duarte EP (2006) Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron–glia crosstalk. Neurobiol Dis 23:533–542

    Article  CAS  PubMed  Google Scholar 

  44. Kolosov M, Uzdensky A (2006) Crayfish mechanoreceptor neuron prevents photoinduced apoptosis of satellite glial cells. Brain Res Bull 69:495–500

    Article  PubMed  Google Scholar 

  45. Barde YA (1994) Neurotrophic factors: an evolutionary perspective. J Neurobiol 25:1329–1333

    Article  CAS  PubMed  Google Scholar 

  46. Jarro H, Fainzilber M (2006) Building complex brains—missing pieces in an evolutionary puzzle. Brain Behav Evol 68:191–195

    Article  Google Scholar 

  47. Rubin GM, Yandell MD, Wortman JR et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Venter JC, Adams MD, Myers EW et al (2001) The sequence of human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  49. Airaksinen MS, Holm L, Hatinen T (2006) Evolution of the GDNF family ligands and receptors. Brain Behav Evol 68:181–190

    Article  PubMed  Google Scholar 

  50. Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23(3):153–165. doi:10.1016/j.niox.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  51. Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689

    Article  CAS  PubMed  Google Scholar 

  52. Ali SM, Olivo M (2003) Nitric oxide mediated photo-induced cell death in human malignant cells. Int J Oncol 22:751–756

    CAS  PubMed  Google Scholar 

  53. Gupta S, Ahmad N, Mukhtar H (1998) Involvement of nitric oxide during phthalocyanine (Pc4) photodynamic therapy-mediated apoptosis. Cancer Res 58:1785–1788

    CAS  PubMed  Google Scholar 

  54. Gomes ER, Almeida RD, Carvalho AP, Duarte CB (2002) Nitric oxide modulates tumor cell death induced by photodynamic therapy through a cGMP-dependent mechanism. Photochem Photobiol 76:423–430

    Article  CAS  PubMed  Google Scholar 

  55. Niziolek M, Korytowski W, Girotti AW (2006) Nitric oxide-induced resistance to lethal photooxidative damage in a breast tumor cell line. Free Radic Biol Med 40:1323–1331

    Article  CAS  PubMed  Google Scholar 

  56. Chan WH (2011) Photodynamic treatment induces an apoptotic pathway involving calcium, nitric oxide, p53, p21-activated kinase 2, and c-Jun N-terminal kinase and inactivates survival signal in human umbilical vein endothelial cells. Int J Mol Sci 12:1041–1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gallus L, Ferrando S, Gambardella C, Faimali M, Piazza V, Masini MA (2013) Nitric oxide synthase (NOS) in the cyprid of Amphibalanus amphitrite (Cirripedia, Crustacea). Neurosci Lett 555:209–214. doi:10.1016/j.neulet.2013.09.041

    Article  CAS  PubMed  Google Scholar 

  58. González Deniselle MC, Garay L, López-Costa JJ, González S, Mougel A, Guennoun R, Schumacher M, De Nicola AF (2004) Progesterone treatment reduces NADPH-diaphorase/nitric oxide synthase in Wobbler mouse motoneuron disease. Brain Res 1014:71–79

    Article  PubMed  Google Scholar 

  59. Khaitin AM, Ischenko IA, Uzdensky AB (2012) The study of the effects of ryanodine and cyclosporin A on the dynamics of Ca2+ in crayfish mechanoreceptor neurons under photodynamic impact. Proc XVI Intern Conf On Neurocybernetics RSU Rostov On Don 1:61–64

    Google Scholar 

  60. Trump BF, Berezesky IK (1992) The role of cytosolic calcium in cell injury, necrosis and apoptosis. Curr Opin Cell Biol 4:227–232

    Article  CAS  PubMed  Google Scholar 

  61. Racioppi L, Means AR (2012) Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem 287(38):31658–31665. doi:10.1074/jbc.R112.356485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Shishodia S, Aggarwal BB (2002) Nuclear factor-kappaB activation: a question of life or death. J Biochem Mol Biol 35:28–40

    Article  CAS  PubMed  Google Scholar 

  63. Matroule JY, Volanti C, Piette J (2006) NF-kappaB in photodynamic therapy: discrepancies of a master regulator. Photochem Photobiol 82(5):1241–1246

    Article  CAS  PubMed  Google Scholar 

  64. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243

    Article  CAS  PubMed  Google Scholar 

  65. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120. doi:10.1038/cdd.2011.96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Golstein P, Kroemer G (2006) Cell death by necrosis: towards a molecular definition. TIBS 32:37–43

    PubMed  Google Scholar 

  67. Syntichaki P, Tavernarakis N (2002) Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep 3:604–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Uzdensky AB (2010) Controlled necrosis. Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol. 4: 3–12

  69. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714. doi:10.1038/nrm2970

    Article  CAS  PubMed  Google Scholar 

  70. Endres M, Dirnagl U (2002) Ischemia and stroke. Adv Exp Med Biol 513:455–473

    Article  CAS  PubMed  Google Scholar 

  71. Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107

    CAS  PubMed  Google Scholar 

  72. Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther 2:1–23

    Article  CAS  Google Scholar 

  73. Ruck A, Heckelsmiller K, Kaufmann R, Grossman N, Haseroth E, Akgun N (2000) Light-induced apoptosis involves a defined sequence of cytoplasmic and nuclear calcium release in AlPcS4-photosensitized rat bladder RR 1022 epithelial cells. Photochem Photobiol 72:210–216

    Article  CAS  PubMed  Google Scholar 

  74. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grants of the Russian Scientific Foundation (14-15-00068) and Russian Foundation for Basic Research (05-04-48440; 08-04-01322; 11-04-01476; 14-04-00741).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Uzdensky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzdensky, A., Berezhnaya, E., Khaitin, A. et al. Protection of the Crayfish Mechanoreceptor Neuron and Glial Cells from Photooxidative Injury by Modulators of Diverse Signal Transduction Pathways. Mol Neurobiol 52, 811–825 (2015). https://doi.org/10.1007/s12035-015-9237-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9237-8

Keywords

Navigation