Skip to main content
Log in

Mechanism Underlying the Analgesic Effect Exerted by Endomorphin-1 in the rat Ventrolateral Periaqueductal Gray

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The ventrolateral periaqueductal gray (vlPAG) is an important brain area, in which 5-HTergic neurons play key roles in descending pain modulation. It has been proposed that opioid peptides within the vlPAG can excite the 5-HTergic neurons by alleviating tonic inhibition from GABAergic neurons, the so-called disinhibitory effect. However, no direct morphological evidence has been observed for the micro-circuitry among the opioid peptide-, GABA-, and 5-HT-immunoreactive (ir) profiles nor for the functional involvement of the opioid peptides in the intrinsic properties of GABAergic and 5-HTergic neurons. In the present study, through microscopic observation of triple-immunofluorescence, we firstly identified the circuitry among the endomorphin-1 (EM1, an endogenous ligand for the μ-opioid receptor)-ir terminals and GABA-ir and 5-HT-ir neurons within the rat vlPAG. The synaptic connections of these neurons were further confirmed by electron microscopy. Through the in vitro whole-cell patch-clamp method, we showed that EM1 has strong inhibitory effects on the spiking of GABAergic neurons. However, although the resting membrane potential was hyperpolarized, EM1 actually increased the firing of 5-HTergic neurons. More interestingly, EM1 strongly inhibited the excitatory input to GABAergic neurons, as well as the inhibitory input to 5-HTergic neurons. Finally, behavioral results showed that pretreatment with a GABAA receptor antagonist potentiated the analgesic effect of EM1, while treatment with a GABAA receptor agonist blocked its analgesic effect. In summary, by utilizing morphological and functional methods, we found that the analgesic effect of EM1 is largely dependent on its potent inhibition on the inhibitory inputs to 5-HTergic neurons, which overwhelms EM1’s direct inhibitory effect on 5-HTergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Basbaum AI, Braz JM (2010) Transgenic mouse models for the tracing of “pain” pathways. In: Kruger L, Light AR (eds) Translational pain research: from mouse to man. Frontiers in Neuroscience, Boca Raton

    Google Scholar 

  2. Zhuo M, Gebhart GF (2002) Modulation of noxious and non-noxious spinal mechanical transmission from the rostral medial medulla in the rat. J Neurophysiol 88(6):2928–2941

    Article  CAS  PubMed  Google Scholar 

  3. Zhuo M, Sengupta JN, Gebhart GF (2002) Biphasic modulation of spinal visceral nociceptive transmission from the rostroventral medial medulla in the rat. J Neurophysiol 87(5):2225–2236

    CAS  PubMed  Google Scholar 

  4. Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    Article  CAS  PubMed  Google Scholar 

  5. Lau BK, Vaughan CW (2014) Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr Opin Neurobiol 29C:159–164

    Article  Google Scholar 

  6. Barbaro NM (1988) Studies of PAG/PVG stimulation for pain relief in humans. Prog Brain Res 77:165–173

    Article  CAS  PubMed  Google Scholar 

  7. Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46(6):575–605

    Article  CAS  PubMed  Google Scholar 

  8. Gebhart GF, Sandkuhler J, Thalhammer JG, Zimmermann M (1984) Inhibition in spinal cord of nociceptive information by electrical stimulation and morphine microinjection at identical sites in midbrain of the cat. J Neurophysiol 51(1):75–89

    CAS  PubMed  Google Scholar 

  9. Jacquet YF, Lajtha A (1973) Morphine action at central nervous system sites in rat: analgesia or hyperalgesia depending on site and dose. Science 182(4111):490–492

    Article  CAS  PubMed  Google Scholar 

  10. Jones SL, Gebhart GF (1988) Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation. Brain Res 460(2):281–296

    Article  CAS  PubMed  Google Scholar 

  11. Lipp J (1991) Possible mechanisms of morphine analgesia. Clin Neuropharmacol 14:131–147

    Article  CAS  PubMed  Google Scholar 

  12. Bodnar RJ (2013) Endogenous opiates and behavior: 2012. Peptides 50:55–95

    Article  CAS  PubMed  Google Scholar 

  13. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  CAS  PubMed  Google Scholar 

  14. Depaulis A, Morgan MM, Liebeskind JC (1987) GABAergic modulation of the analgesic effects of morphine microinjected in the ventral periaqueductal gray matter of the rat. Brain Res 436(2):223–228

    Article  CAS  PubMed  Google Scholar 

  15. Ingram SL, Macey TA, Fossum EN, Morgan MM (2008) Tolerance to repeated morphine administration is associated with increased potency of opioid agonists. Neuropsychopharmacology 33(10):2494–2504

    Article  CAS  PubMed  Google Scholar 

  16. Mehalick ML, Ingram SL, Aicher SA, Morgan MM (2013) Chronic inflammatory pain prevents tolerance to the antinociceptive effect of morphine microinjected into the ventrolateral periaqueductal gray of the rat. J Pain 14(12):1601–1610

    Article  CAS  PubMed  Google Scholar 

  17. Moreau JL, Fields HL (1986) Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res 397(1):37–46

    Article  CAS  PubMed  Google Scholar 

  18. Park C, Kim JH, Yoon BE, Choi EJ, Lee CJ, Shin HS (2010) T-type channels control the opioidergic descending analgesia at the low threshold-spiking GABAergic neurons in the periaqueductal gray. Proc Natl Acad Sci U S A 107(33):14857–14862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chieng B, Christie MJ (1994) Inhibition by opioids acting on μ-receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurones in vitro. Br J Pharmacol 113:303–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kishimoto K, Koyama S, Akaike N (2001) Synergistic mu-opioid and 5-HT1A presynaptic inhibition of GABA release in rat periaqueductal gray neurons. Neuropharmacology 41(5):529–538

    Article  CAS  PubMed  Google Scholar 

  21. Ogawa S, Kow LM, Pfaff DW (1994) In vitro electrophysiological characterization of midbrain periaqueductal gray neurons in female rats: responses to GABA- and Met-enkephalin-related agents. Brain Res 666(2):239–249

    Article  CAS  PubMed  Google Scholar 

  22. Morgan MM, Clayton CC (2005) Defensive behaviors evoked from the ventrolateral periaqueductal gray of the rat: comparison of opioid and GABA disinhibition. Behav Brain Res 164(1):61–66

    Article  CAS  PubMed  Google Scholar 

  23. Vaughan CW, Christie MJ (1997) Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro. J Physiol 498:463–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vaughan CW, Ingram SL, Connor MA (1997) How opioids inhibit GABA-mediated neurotransmission. Nature 390:611–614

    Article  CAS  PubMed  Google Scholar 

  25. Chen T, Hui R, Wang XL, Zhang T, Dong YX, Li YQ (2008) Origins of endomorphin-immunoreactive fibers and terminals in different columns of the periaqueductal gray in the rat. J Comp Neurol 509(1):72–87

    Article  PubMed  Google Scholar 

  26. Martin-Schild S, Gerall AA, Kastin AJ, Zadina JE (1999) Differential distribution of endomorphin 1- and endomorphin 2-like immunoreactivities in the CNS of the rodent. J Comp Neurol 405:450–471

    Article  CAS  PubMed  Google Scholar 

  27. Gioia M, Bianchi R (1995) Enkephalin in the caudal PAG of rat: an immunocytochemical electron microscopic study. J Hirnforsch 36(3):421–431

    CAS  PubMed  Google Scholar 

  28. Williams FG, Beitz AJ (1990) Ultrastructural morphometric analysis of enkephalin-immunoreactive terminals in the ventrocaudal periaqueductal gray: analysis of their relationship to periaqueductal gray-raphe magnus projection neurons. Neuroscience 38(2):381–394

    Article  CAS  PubMed  Google Scholar 

  29. Commons KG, Aicher SA, Kow LM, Pfaff DW (2000) Presynaptic and postsynaptic relations of mu-opioid receptors to gamma-aminobutyric acid-immunoreactive and medullary-projecting periaqueductal gray neurons. J Comp Neurol 419(4):532–542

    Article  CAS  PubMed  Google Scholar 

  30. Kalyuzhny AE, Wessendorf MW (1998) Relationship of mu- and delta-opioid receptors to GABAergic neurons in the central nervous system, including antinociceptive brainstem circuits. J Comp Neurol 392(4):528–547

    Article  CAS  PubMed  Google Scholar 

  31. Behbehani MM, Jiang MR, Chandler SD, Ennis M (1990) The effect of GABA and its antagonists on midbrain periaqueductal gray neurons in the rat. Pain 40(2):195–204

    Article  CAS  PubMed  Google Scholar 

  32. Reichling DB, Basbaum AI (1990) Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: II. Electron microscopic immunocytochemical evidence of GABAergic control over the projection from the periaqueductal gray to the nucleus raphe magnus in the rat. J Comp Neurol 302(2):378–393

    Article  CAS  PubMed  Google Scholar 

  33. Williams FG, Beitz AJ (1990) Ultrastructural morphometric analysis of GABA-immunoreactive terminals in the ventrocaudal periaqueductal grey: analysis of the relationship of GABA terminals and the GABAA receptor to periaqueductal grey-raphe magnus projection neurons. J Neurocytol 19(5):686–696

    Article  CAS  PubMed  Google Scholar 

  34. Chiou LC, Huang LY (1999) Mechanism underlying increased neuronal activity in the rat ventrolateral periaqueductal grey by a mu-opioid. J Physiol 518(Pt 2):551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fichna J, Janecka A, Costentin J, Do Rego JC (2007) The endomorphin system and its evolving neurophysiological role. Pharmacol Rev 59(1):88–123

    Article  CAS  PubMed  Google Scholar 

  36. Lazarus LH, Okada Y (2012) Engineering endomorphin drugs: state of the art. Expert Opin Ther Pat 22(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hui R, Wang W, Chen T, Lu BC, Li H, Zhang T, Wu SX, Li YQ (2010) Origins of endomorphin-2 immunopositive fibers and terminals in the spinal dorsal horn of the rat. Neuroscience 169:422–430

    Article  CAS  PubMed  Google Scholar 

  38. Pierce TL, Wessendorf MW (2000) Immunocytochemical mapping of endomorphin-2 immunoreactivity in rat brain. J Chem Neuroanat 18:181–207

    Article  CAS  PubMed  Google Scholar 

  39. Tseng LF, Narita M, Suganuma C, Mizoguchi H, Ohsawa M, Nagase H, Kampine JP (2000) Differential antinociceptive effects of endomorphin-1 and endomorphin-2 in the mouse. J Pharmacol Exp Ther 292:576–583

    CAS  PubMed  Google Scholar 

  40. Hao S, Mamiya K, Takahata O, Iwasaki H, Mata M, Fink DJ (2003) Nifedipine potentiates the antinociceptive effect of endomorphin-1 microinjected into the periaqueductal gray in rats. Anesth Analg 96(4):1065–1067

    CAS  PubMed  Google Scholar 

  41. Terashvili M, Wu HE, Leitermann RJ, Sun HS, Clithero ADTL (2005) Differential mechanisms of antianalgesia induced by endomorphin-1 and endomorphin-2 in the ventral periaqueductal gray of the rat. J Pharmacol Exp Ther 312:1257–1265

    Article  CAS  PubMed  Google Scholar 

  42. Ge SN, Li ZH, Tang J, Ma Y, Hioki H, Zhang T, Lu YC, Zhang FX, Mizuno N, Kaneko T, Liu YY, Lung MS, Gao GD, Li JL (2014) Differential expression of VGLUT1 or VGLUT2 in the trigeminothalamic or trigeminocerebellar projection neurons in the rat. Brain Struct Funct 219(1):211–229

    Article  CAS  PubMed  Google Scholar 

  43. Huo FQ, Chen T, Lv BC, Wang J, Zhang T, Qu CL, Li YQ, Tang JS (2009) Synaptic connections between GABAergic elements and serotonergic terminals or projecting neurons in the ventrolateral orbital cortex. Cereb Cortex 19(6):1263–1272

    Article  PubMed  Google Scholar 

  44. Li JL, Wang D, Kaneko T, Shigemoto R, Nomura S, Mizuno N (2000) Relationship between neurokinin-1 receptor and substance P in the striatum: light and electron microscopic immunohistochemical study in the rat. J Comp Neurol 418:156–163

    Article  CAS  PubMed  Google Scholar 

  45. Huo FQ, Qu CL, Li YQ, Tang JS, Jia H (2008) GABAergic modulation is involved in the ventrolateral orbital cortex 5-HT 1A receptor activation-induced antinociception in the rat. Pain 139(2):398–405

    Article  CAS  PubMed  Google Scholar 

  46. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88

    Article  CAS  PubMed  Google Scholar 

  47. Tillu DV, Gebhart GF, Sluka KA (2008) Descending facilitatory pathways from the RVM initiate and maintain bilateral hyperalgesia after muscle insult. Pain 136(3):331–339

    Article  CAS  PubMed  Google Scholar 

  48. Chen T, Koga K, Descalzi G, Qiu S, Wang J, Zhang LS, Zhang ZJ, He XB, Qin X, Xu FQ, Hu J, Wei F, Huganir RL, Li YQ, Zhuo M (2014) Postsynaptic potentiation of corticospinal projecting neurons in the anterior cingulate cortex after nerve injury. Mol Pain 10:33

    PubMed  PubMed Central  Google Scholar 

  49. Li XY, Ko HG, Chen T, Descalzi G, Koga K, Wang H, Kim SS, Shang Y, Kwak C, Park SW, Shim J, Lee K, Collingridge GL, Kaang BK, Zhuo M (2010) Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science 330(6009):1400–1404

    Article  CAS  PubMed  Google Scholar 

  50. Cao XY, Xu H, Wu LJ, Li XY, Chen T, Zhuo M (2009) Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury. Mol Pain 5:73

    PubMed  PubMed Central  Google Scholar 

  51. Ding YQ, Kaneko T, Nomura S, Mizuno N (1996) Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol 367(3):375–402

    Article  CAS  PubMed  Google Scholar 

  52. Mollereau C, Mouledous L (2000) Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides 21(7):907–917

    Article  CAS  PubMed  Google Scholar 

  53. Moskowitz AS, Goodman RR (1985) Autoradiographic distribution of mu1 and mu2 opioid binding in the mouse central nervous system. Brain Res 360(1–2):117–129

    Article  CAS  PubMed  Google Scholar 

  54. Connor M, Christie MJ (1998) Modulation of Ca2+ channel currents of acutely dissociated rat periaqueductal grey neurons. J Physiol 509(Pt 1):47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ingram SL, Fossum EN, Morgan MM (2007) Behavioral and electrophysiological evidence for opioid tolerance in adolescent rats. Neuropsychopharmacology 32(3):600–606

    Article  CAS  PubMed  Google Scholar 

  56. Wang QP, Nakai Y (1993) Enkephalinergic innervation of GABAergic neurons in the dorsal raphe nucleus of the rat. Brain Res Bull 32(3):315–320

    Article  CAS  PubMed  Google Scholar 

  57. Wang QP, Zadina JE, Guan JL, Shioda S (2002) Morphological studies of the endomorphinergic neurons in the central nervous system. Jpn J Pharmacol 89(3):209–215

    Article  CAS  PubMed  Google Scholar 

  58. Osborne PB, Vaughan CW, Wilson HI, Christie MJ (1996) Opioid inhibition of rat periaqueductal grey neurones with identified projections to rostral ventromedial medulla in vitro. J Physiol 490(Pt 2):383–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bagley EE, Chieng BC, Christie MJ, Connor M (2005) Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine. Br J Pharmacol 146(1):68–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82:443–468

    Article  CAS  PubMed  Google Scholar 

  61. Beitz AJ (1989) Possible origin of glutamatergic projections to the midbrain periaqueductal gray and deep layer of the superior colliculus of the rat. Brain Res Bull 23(1–2):25–35

    Article  CAS  PubMed  Google Scholar 

  62. Liu ZL, Ma H, Xu RX, Dai YW, Zhang HT, Yao XQ, Yang K (2012) Potassium channels underlie postsynaptic but not presynaptic GABAB receptor-mediated inhibition on ventrolateral periaqueductal gray neurons. Brain Res Bull 88(5):529–533

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Giannina Descalzi (Department of Neuroscience, Icahn School of Medicine, USA) for carefully reading and constructive suggestions on the article. This work was supported by National Natural Science Foundation of China (31010103909, 81371239 to Y.-Q. Li, 31171068 to J.-Q. Du and 31371126 to T. Chen).

Conflict of Interest

The authors declare that they have no conflicts of interest with any of the work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Qing Li.

Additional information

Tao Chen, Jing Li, Ban Feng, Rui Hui and Yu-Lin Dong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Li, J., Feng, B. et al. Mechanism Underlying the Analgesic Effect Exerted by Endomorphin-1 in the rat Ventrolateral Periaqueductal Gray. Mol Neurobiol 53, 2036–2053 (2016). https://doi.org/10.1007/s12035-015-9159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9159-5

Keywords

Navigation