Skip to main content
Log in

Degradation of βII-Spectrin Protein by Calpain-2 and Caspase-3 Under Neurotoxic and Traumatic Brain Injury Conditions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 27 September 2017

This article has been updated

Abstract

A major consequence of traumatic brain injury (TBI) is the rapid proteolytic degradation of structural cytoskeletal proteins. This process is largely reflected by the interruption of axonal transport as a result of extensive axonal injury leading to neuronal cell injury. Previous work from our group has described the extensive degradation of the axonally enriched cytoskeletal αII-spectrin protein which results in molecular signature breakdown products (BDPs) indicative of injury mechanisms and to specific protease activation both in vitro and in vivo. In the current study, we investigated the integrity of βII-spectrin protein and its proteolytic profile both in primary rat cerebrocortical cell culture under apoptotic, necrotic, and excitotoxic challenge and extended to in vivo rat model of experimental TBI (controlled cortical impact model). Interestingly, our results revealed that the intact 260-kDa βII-spectrin is degraded into major fragments (βII-spectrin breakdown products (βsBDPs)) of 110, 108, 85, and 80 kDa in rat brain (hippocampus and cortex) 48 h post-injury. These βsBDP profiles were further characterized and compared to an in vitro βII-spectrin fragmentation pattern of naive rat cortex lysate digested by calpain-2 and caspase-3. Results revealed that βII-spectrin was degraded into major fragments of 110/85 kDa by calpain-2 activation and 108/80 kDa by caspase-3 activation. These data strongly support the hypothesis that in vivo activation of multiple protease system induces structural protein proteolysis involving βII-spectrin proteolysis via a specific calpain and/or caspase-mediated pathway resulting in a signature, protease-specific βsBDPs that are dependent upon the type of neural injury mechanism. This work extends on previous published work that discusses the interplay spectrin family (αII-spectrin and βII-spectrin) and their susceptibility to protease proteolysis and their implication to neuronal cell death mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 27 September 2017

    An erratum to this article has been published.

Abbreviations

TBI:

Traumatic brain injury

αII-SBDPs:

αII-Spectrin breakdown products

βsBDPs:

βII-Spectrin breakdown products

BDPs:

Breakdown products

CCI:

Controlled cortical impact

EDTA:

Ethylenediaminetetraacetic acid

MTX:

Maitotoxin

NMDA:

N-Methyl-d-aspartate

STS:

Staurosporine

References

  1. Reeves TM, Greer JE, Vanderveer AS, Phillips LL (2010) Proteolysis of submembrane cytoskeletal proteins ankyrin-G and alphaII-spectrin following diffuse brain injury: a role in white matter vulnerability at nodes of Ranvier. Brain Pathol 20(6):1055–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kinnunen KM, Greenwood R, Powell JH, Leech R, Hawkins PC, Bonnelle V, Patel MC, Counsell SJ, Sharp DJ (2011) White matter damage and cognitive impairment after traumatic brain injury. Brain 134(Pt 2):449–463

    Article  PubMed  Google Scholar 

  3. Kondo K, Maruishi M, Ueno H, Sawada K, Hashimoto Y, Ohshita T, Takahashi T, Ohtsuki T, Matsumoto M (2010) The pathophysiology of prospective memory failure after diffuse axonal injury–lesion-symptom analysis using diffusion tensor imaging. BMC Neurosci 11:147

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bennett M, O’Brien DP, Phillips JP, Farrell MA (1995) Clinicopathologic observations in 100 consecutive patients with fatal head injury admitted to a neurosurgical unit. Irish Med J 88(2):60–62

    CAS  Google Scholar 

  5. Kampfl A, Posmantur RM, Zhao X, Schmutzhard E, Clifton GL, Hayes RL (1997) Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy: a review and update. J Neurotrauma 14(3):121–134

    Article  CAS  PubMed  Google Scholar 

  6. Buki A, Okonkwo DO, Wang KK, Povlishock JT (2000) Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci 20(8):2825–2834

    CAS  PubMed  Google Scholar 

  7. Medana IM, Esiri MM (2003) Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126(Pt 3):515–530

    Article  CAS  PubMed  Google Scholar 

  8. Gale SD, Johnson SC, Bigler ED, Blatter DD (1995) Nonspecific white matter degeneration following traumatic brain injury. J Int Neuropsychol Soc 1(1):17–28

    Article  CAS  PubMed  Google Scholar 

  9. Bramlett HM, Dietrich WD (2002) Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathol 103(6):607–614

    Article  PubMed  Google Scholar 

  10. Ng HK, Mahaliyana RD, Poon WS (1994) The pathological spectrum of diffuse axonal injury in blunt head trauma: assessment with axon and myelin strains. Clin Neurol Neurosurg 96(1):24–31

    Article  CAS  PubMed  Google Scholar 

  11. Liu MC, Kobeissy F, Zheng W, Zhang Z, Hayes RL, Wang KK (2010) Dual vulnerability of tau to calpains and caspase-3 proteolysis under neurotoxic and neurodegenerative conditions. ASN Neuro 3(1):e00051

    Article  Google Scholar 

  12. Park E, Liu E, Shek M, Park A, Baker AJ (2007) Heavy neurofilament accumulation and alpha-spectrin degradation accompany cerebellar white matter functional deficits following forebrain fluid percussion injury. Exp Neurol 204(1):49–57

    Article  CAS  PubMed  Google Scholar 

  13. Bennett V, Gilligan DM (1993) The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol 9:27–66

    Article  CAS  PubMed  Google Scholar 

  14. Huh GY, Glantz SB, Je S, Morrow JS, Kim JH (2001) Calpain proteolysis of alpha II-spectrin in the normal adult human brain. Neurosci Lett 316(1):41–44

    Article  CAS  PubMed  Google Scholar 

  15. De Matteis MA, Morrow JS (2000) Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 113(Pt 13):2331–2343

    PubMed  Google Scholar 

  16. Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81(3):1353–1392

    CAS  PubMed  Google Scholar 

  17. Backman L, Pekrun A, Gratzer WB (1991) Formation and properties of spectrin containing a truncated beta-chain, generated by an endogenous calcium-dependent protease. J Biol Chem 266(6):3835–3840

    CAS  PubMed  Google Scholar 

  18. Viel A, Branton D (1996) Spectrin: on the path from structure to function. Curr Opin Cell Biol 8(1):49–55

    Article  CAS  PubMed  Google Scholar 

  19. Goodman SR, Weidner SA (1980) Binding of spectrin alpha 2-beta 2 tetramers to human erythrocyte membranes. J Biol Chem 255(17):8082–8086

    CAS  PubMed  Google Scholar 

  20. Rolius R, Antoniou C, Nazarova LA, Kim SH, Cobb G, Gala P, Rajaram P, Li Q, Fung LW (2010) Inhibition of calpain but not caspase activity by spectrin fragments. Cell Mol Biol Lett 15(3):395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayes NV, Scott C, Heerkens E, Ohanian V, Maggs AM, Pinder JC, Kordeli E, Baines AJ (2000) Identification of a novel C-terminal variant of beta II spectrin: two isoforms of beta II spectrin have distinct intracellular locations and activities. J Cell Sci 113(Pt 11):2023–2034

    CAS  PubMed  Google Scholar 

  22. Ursitti JA, Martin L, Resneck WG, Chaney T, Zielke C, Alger BE, Bloch RJ (2001) Spectrins in developing rat hippocampal cells. Brain Res Dev Brain Res 129(1):81–93

    Article  CAS  PubMed  Google Scholar 

  23. Musacchio A, Noble M, Pauptit R, Wierenga R, Saraste M (1992) Crystal structure of a Src-homology 3 (SH3) domain. Nat 359(6398):851–855

    Article  CAS  Google Scholar 

  24. Musacchio A, Gibson T, Lehto VP, Saraste M (1992) SH3–an abundant protein domain in search of a function. FEBS Lett 307(1):55–61

    Article  CAS  PubMed  Google Scholar 

  25. Croall DE, Ersfeld K (2007) The calpains: modular designs and functional diversity. Genome Biol 8(6):218

    Article  PubMed  PubMed Central  Google Scholar 

  26. Squier MK, Miller AC, Malkinson AM, Cohen JJ (1994) Calpain activation in apoptosis. J Cell Physiol 159(2):229–237

    Article  CAS  PubMed  Google Scholar 

  27. Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23(1):20–26

    Article  PubMed  Google Scholar 

  28. Siman R, Noszek JC (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1(4):279–287

    Article  CAS  PubMed  Google Scholar 

  29. Azuma M, David LL, Shearer TR (1991) Cysteine protease inhibitor E64 reduces the rate of formation of selenite cataract in the whole animal. Curr Eye Res 10(7):657–666

    Article  CAS  PubMed  Google Scholar 

  30. Wang DS, Shaw R, Winkelmann JC, Shaw G (1994) Binding of PH domains of beta-adrenergic receptor kinase and beta-spectrin to WD40/beta-transducin repeat containing regions of the beta-subunit of trimeric G-proteins. Biochem Biophys Res Commun 203(1):29–35

    Article  CAS  PubMed  Google Scholar 

  31. Nath R, Raser KJ, Stafford D, Hajimohammadreza I, Posner A, Allen H, Talanian RV, Yuen P, Gilbertsen RB, Wang KK (1996) Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease (s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319(Pt 3):683–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morrow JS (1989) The spectrin membrane skeleton: emerging concepts. Curr Opin Cell Biol 1(1):23–29

    Article  CAS  PubMed  Google Scholar 

  33. Cryns VL, Bergeron L, Zhu H, Li H, Yuan J (1996) Specific cleavage of alpha-fodrin during Fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1beta-converting enzyme/Ced-3 protease distinct from the poly (ADP-ribose) polymerase protease. J Biol Chem 271(49):31277–31282

    Article  CAS  PubMed  Google Scholar 

  34. Vanags DM, Porn-Ares MI, Coppola S, Burgess DH, Orrenius S (1996) Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 271(49):31075–31085

    Article  CAS  PubMed  Google Scholar 

  35. Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL (2002) A Ca (2+) switch aligns the active site of calpain. Cell 108(5):649–660

    Article  CAS  PubMed  Google Scholar 

  36. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43(5):1369–1374

    Article  CAS  PubMed  Google Scholar 

  37. Jourdi H, Yanagihara T, Martinez U, Bi X, Lynch G, Baudry M (2005) Effects of positive AMPA receptor modulators on calpain-mediated spectrin degradation in cultured hippocampal slices. Neurochem Int 46(1):31–40

    Article  CAS  PubMed  Google Scholar 

  38. Seubert P, Lee K, Lynch G (1989) Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res 492(1–2):366–370

    Article  CAS  PubMed  Google Scholar 

  39. Seubert P, Nakagawa Y, Ivy G, Vanderklish P, Baudry M, Lynch G (1989) Intrahippocampal colchicine injection results in spectrin proteolysis. Neurosci 31(1):195–202

    Article  CAS  Google Scholar 

  40. Roberts-Lewis JM, Savage MJ, Marcy VR, Pinsker LR, Siman R (1994) Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J Neurosci 14(6):3934–3944

    CAS  PubMed  Google Scholar 

  41. Nath R, Raser KJ, McGinnis K, Nadimpalli R, Stafford D, Wang KK (1996) Effects of ICE-like protease and calpain inhibitors on neuronal apoptosis. Neuroreport 8(1):249–255

    Article  CAS  PubMed  Google Scholar 

  42. Pike BR, Flint J, Dutta S, Johnson E, Wang KK, Hayes RL (2001) Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 78(6):1297–1306

    Article  CAS  PubMed  Google Scholar 

  43. Pike BR, Flint J, Dave JR, Lu XC, Wang KK, Tortella FC, Hayes RL (2004) Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 24(1):98–106

    Article  CAS  PubMed  Google Scholar 

  44. Pike BR, Zhao X, Newcomb JK, Posmantur RM, Wang KK, Hayes RL (1998) Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. Neuroreport 9(11):2437–2442

    Article  CAS  PubMed  Google Scholar 

  45. Wang KK, Posmantur R, Nath R, McGinnis K, Whitton M, Talanian RV, Glantz SB, Morrow JS (1998) Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273(35):22490–22497

    Article  CAS  PubMed  Google Scholar 

  46. Lofvenberg L, Backman L (1999) Calpain-induced proteolysis of beta-spectrins. FEBS Lett 443(2):89–92

    Article  CAS  PubMed  Google Scholar 

  47. Roberts-Lewis JM, Siman R (1993) Spectrin proteolysis in the hippocampus: a biochemical marker for neuronal injury and neuroprotection. Ann N Y Acad Sci 679:78–86

    Article  CAS  PubMed  Google Scholar 

  48. Siman R, Toraskar N, Dang A, McNeil E, McGarvey M, Plaum J, Maloney E, Grady MS (2009) A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J Neurotrauma 26(11):1867–1877

    Article  PubMed  PubMed Central  Google Scholar 

  49. Glantz SB, Cianci CD, Iyer R, Pradhan D, Wang KK, Morrow JS (2007) Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Biochem 46(2):502–513

    Article  CAS  Google Scholar 

  50. Nath R, Scott M, Nadimpalli R, Gupta R, Wang KK (2000) Activation of apoptosis-linked caspase(s) in NMDA-injured brains in neonatal rats. Neurochem Int 36(2):119–126

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, Wang KK (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14(11):1289–1298

    Article  CAS  PubMed  Google Scholar 

  52. Waterhouse N, Kumar S, Song Q, Strike P, Sparrow L, Dreyfuss G, Alnemri ES, Litwack G, Lavin M, Watters D (1996) Heteronuclear ribonucleoproteins C1 and C2, components of the spliceosome, are specific targets of interleukin 1beta-converting enzyme-like proteases in apoptosis. J Biol Chem 271(46):29335–29341

    Article  CAS  PubMed  Google Scholar 

  53. Chiesa R, Angeretti N, Del Bo R, Lucca E, Munna E, Forloni G (1998) Extracellular calcium deprivation in astrocytes: regulation of mRNA expression and apoptosis. J Neurochem 70(4):1474–1483

    Article  CAS  PubMed  Google Scholar 

  54. Koumura A, Nonaka Y, Hyakkoku K, Oka T, Shimazawa M, Hozumi I, Inuzuka T, Hara H (2008) A novel calpain inhibitor, ((1S)-1((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice. Neurosci 157(2):309–318

    Article  CAS  Google Scholar 

  55. Shirasaki Y, Miyashita H, Yamaguchi M, Inoue J, Nakamura M (2005) Exploration of orally available calpain inhibitors: peptidyl alpha-ketoamides containing an amphiphile at P3 site. Bioorg Med Chem 13(14):4473–4484

    Article  CAS  PubMed  Google Scholar 

  56. Pockros PJ, Schiff ER, Shiffman ML, McHutchison JG, Gish RG, Afdhal NH, Makhviladze M, Huyghe M, Hecht D, Oltersdorf T, Shapiro DA (2007) Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatol 46(2):324–329

    Article  CAS  Google Scholar 

  57. Hoglen NC, Anselmo DM, Katori M, Kaldas M, Shen XD, Valentino KL, Lassman C, Busuttil RW, Kupiec-Weglinski JW, Farmer DG (2007) A caspase inhibitor, IDN-6556, ameliorates early hepatic injury in an ex vivo rat model of warm and cold ischemia. Liver Transpl 13(3):361–366

    Article  PubMed  Google Scholar 

  58. Baskin-Bey ES, Washburn K, Feng S, Oltersdorf T, Shapiro D, Huyghe M, Burgart L, Garrity-Park M, van Vilsteren FG, Oliver LK, Rosen CB, Gores GJ (2007) Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am J Transplant 7(1):218–225

    Article  CAS  PubMed  Google Scholar 

  59. Poordad FF (2004) IDN-6556 idun pharmaceuticals Inc. Curr Opin Investig Drugs 5(11):1198–1204

    CAS  PubMed  Google Scholar 

  60. Liu MC, Akle V, Zheng W, Kitlen J, O’Steen B, Larner SF, Dave JR, Tortella FC, Hayes RL, Wang KK (2006) Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem 98(3):700–712

    Article  CAS  PubMed  Google Scholar 

  61. Beneke R, Bihn D, Hutler M, Leithauser RM (2005) Haemolysis caused by alterations of alpha- and beta-spectrin after 10 to 35 min of severe exercise. Eur J Appl Physiol 95(4):307–312

    Article  CAS  PubMed  Google Scholar 

  62. Chen Z, Kontonotas D, Friedmann D, Pitts-Kiefer A, Frederick JR, Siman R, Neumar RW (2005) Developmental status of neurons selectively vulnerable to rapidly triggered post-ischemic caspase activation. Neurosci Lett 376(3):166–170

    Article  CAS  PubMed  Google Scholar 

  63. Neumar RW, Meng FH, Mills AM, Xu YA, Zhang C, Welsh FA, Siman R (2001) Calpain activity in the rat brain after transient forebrain ischemia. Exp Neurol 170(1):27–35

    Article  CAS  PubMed  Google Scholar 

  64. Brophy GM, Pineda JA, Papa L, Lewis SB, Valadka AB, Hannay HJ, Heaton SC, Demery JA, Liu MC, Tepas JJ 3rd, Gabrielli A, Robicsek S, Wang KK, Robertson CS, Hayes RL (2009) alphaII-Spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J Neurotrauma 26(4):471–479

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kobeissy FH, Ottens AK, Zhang Z, Liu MC, Denslow ND, Dave JR, Tortella FC, Hayes RL, Wang KK (2006) Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Proteomics 5(10):1887–1898

    Article  CAS  PubMed  Google Scholar 

  66. Gavett BE, Stern RA, Cantu RC, Nowinski CJ, McKee AC (2010) Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimers Res Ther 2(3):18

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ivy G, Seubert P, Lynch G, Baudry M (1988) Lesions of entorhinal cortex produce a calpain-mediated degradation of brain spectrin in dentate gyrus. II. Anatomical studies. Brain Res 459(2):233–240

    Article  CAS  PubMed  Google Scholar 

  68. del Cerro S, Arai A, Kessler M, Bahr BA, Vanderklish P, Rivera S, Lynch G (1994) Stimulation of NMDA receptors activates calpain in cultured hippocampal slices. Neurosci Lett 167(1–2):149–152

    Article  PubMed  Google Scholar 

  69. Ringger NC, O’Steen BE, Brabham JG, Silver X, Pineda J, Wang KK, Hayes RL, Papa L (2004) A novel marker for traumatic brain injury: CSF alphaII-spectrin breakdown product levels. J Neurotrauma 21(10):1443–1456

    Article  CAS  PubMed  Google Scholar 

  70. Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, Tepas J, Robertson C, Buki A, Scharf D, Jixiang M, Akinyi L, Muller U, Wang KK, Hayes RL (2010) alphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma 27(7):1203–1213

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tang Y, Katuri V, Dillner A, Mishra B, Deng CX, Mishra L (2003) Disruption of transforming growth factor-beta signaling in ELF beta-spectrin-deficient mice. Sci 299(5606):574–577

    Article  CAS  Google Scholar 

  72. Stankewich MC, Cianci CD, Stabach PR, Ji L, Nath A, Morrow JS (2011) Cell organization, growth, and neural and cardiac development require alphaII-spectrin. J Cell Sci 124(Pt 23):3956–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang C, Susuki K, Zollinger DR, Dupree JL, Rasband MN (2013) Membrane domain organization of myelinated axons requires betaII spectrin. J Cell Biol 203(3):437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harris AS, Morrow JS (1990) Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proc Natl Acad Sci U S A 87(8):3009–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Povlishock JT (1992) Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 2(1):1–12

    CAS  PubMed  Google Scholar 

  76. Di Stasi AM, Gallo V, Ceccarini M, Petrucci TC (1991) Neuronal fodrin proteolysis occurs independently of excitatory amino acid-induced neurotoxicity. Neuron 6(3):445–454

    Article  PubMed  Google Scholar 

  77. Hu RJ, Bennett V (1991) In vitro proteolysis of brain spectrin by calpain I inhibits association of spectrin with ankyrin-independent membrane binding site(s). J Biol Chem 266(27):18200–18205

    CAS  PubMed  Google Scholar 

  78. Czogalla A, Jaszewski AR, Diakowski W, Bok E, Jezierski A, Sikorski AF (2007) Structural insight into an ankyrin-sensitive lipid-binding site of erythroid beta-spectrin. Mol Membr Biol 24(3):215–224

    Article  CAS  PubMed  Google Scholar 

  79. Davis LH, Bennett V (1994) Identification of two regions of beta G spectrin that bind to distinct sites in brain membranes. J Biol Chem 269(6):4409–4416

    CAS  PubMed  Google Scholar 

  80. Garbe DS, Das A, Dubreuil RR, Bashaw GJ (2007) beta-Spectrin functions independently of Ankyrin to regulate the establishment and maintenance of axon connections in the Drosophila embryonic CNS. Dev 134(2):273–284

    Article  CAS  Google Scholar 

  81. Kizhatil K, Sandhu NK, Peachey NS, Bennett V (2009) Ankyrin-B is required for coordinated expression of beta-2-spectrin, the Na/K-ATPase and the Na/Ca exchanger in the inner segment of rod photoreceptors. Exp Eye Res 88(1):57–64

    Article  CAS  PubMed  Google Scholar 

  82. Berger RP, Hayes RL, Richichi R, Beers SR, Wang KK (2012) Serum concentrations of ubiquitin C-terminal hydrolase-L1 and alphaII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J Neurotrauma 29(1):162–167

    Article  PubMed  PubMed Central  Google Scholar 

  83. Siman R, Giovannone N, Hanten G, Wilde EA, McCauley SR, Hunter JV, Li X, Levin HS, Smith DH (2013) Evidence that the blood biomarker SNTF predicts brain imaging changes and persistent cognitive dysfunction in mild TBI patients. Front Neurol 4:190

    Article  PubMed  PubMed Central  Google Scholar 

  84. Raghupathi R, Graham DI, McIntosh TK (2000) Apoptosis after traumatic brain injury. J Neurotrauma 17(10):927–938

    Article  CAS  PubMed  Google Scholar 

  85. Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14(2):215–222

    Article  PubMed  Google Scholar 

  86. Liu MC, Akle V, Zheng W, Dave JR, Tortella FC, Hayes RL, Wang KK (2006) Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochem J 394(Pt 3):715–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Hussam Jourdi for his critical and thorough discussion. Special thanks to Mr. Danny Johnson for his technical support in animal surgeries and tissue collection. This work was supported by the National Institutes of Health grants R01 NS049175-01 and R01 NS052831-01 and the Department of Defense grant DAMD17-03-1-0066. KKW and RLH hold equity in Banyan Biomarkers, Inc., a company commercializing technology of detecting brain injury biomarkers. RLH and OG are employees at Banyan Biomarkers Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Firas H. Kobeissy or Kevin K. W. Wang.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12035-017-0764-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobeissy, F.H., Liu, M.C., Yang, Z. et al. Degradation of βII-Spectrin Protein by Calpain-2 and Caspase-3 Under Neurotoxic and Traumatic Brain Injury Conditions. Mol Neurobiol 52, 696–709 (2015). https://doi.org/10.1007/s12035-014-8898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8898-z

Keywords

Navigation