Skip to main content

Advertisement

Log in

Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carmeliet P (2003) Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet 4(9):710–720. doi:10.1038/nrg1158

    Article  CAS  PubMed  Google Scholar 

  2. Ogunshola OO, Antic A, Donoghue MJ, Fan SY, Kim H, Stewart WB, Madri JA, Ment LR (2002) Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 277(13):11410–11415. doi:10.1074/jbc.M111085200

    Article  CAS  PubMed  Google Scholar 

  3. Schiera G, Proia P, Alberti C, Mineo M, Savettieri G, Di Liegro I (2007) Neurons produce FGF2 and VEGF and secrete them at least in part by shedding extracellular vesicles. J Cell Mol Med 11(6):1384–1394. doi:10.1111/j.1582-4934.2007.00100.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ijichi A, Sakuma S, Tofilon PJ (1995) Hypoxia-induced vascular endothelial growth factor expression in normal rat astrocyte cultures. Glia 14(2):87–93. doi:10.1002/glia.440140203

    Article  CAS  PubMed  Google Scholar 

  5. Bartholdi D, Rubin BP, Schwab ME (1997) VEGF mRNA induction correlates with changes in the vascular architecture upon spinal cord damage in the rat. Eur J Neurosci 9(12):2549–2560

    Article  CAS  PubMed  Google Scholar 

  6. Tovar YRLB, Zepeda A, Tapia R (2007) Vascular endothelial growth factor prevents paralysis and motoneuron death in a rat model of excitotoxic spinal cord neurodegeneration. J Neuropathol Exp Neurol 66(10):913–922. doi:10.1097/nen.0b013e3181567c16

    Article  Google Scholar 

  7. Tolosa L, Mir M, Asensio VJ, Olmos G, Llado J (2008) Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase. J Neurochem 105(4):1080–1090. doi:10.1111/j.1471-4159.2007.05206.x

    Article  CAS  PubMed  Google Scholar 

  8. Rosenstein JM, Krum JM, Ruhrberg C (2010) VEGF in the nervous system. Organogenesis 6(2):107–114

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99(18):11946–11950. doi:10.1073/pnas.182296499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Sondell M, Sundler F, Kanje M (2000) Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 12(12):4243–4254

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Y, Jin K, Mao XO, Greenberg DA (2003) Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J 17(2):186–193. doi:10.1096/fj.02-0515com

    Article  CAS  PubMed  Google Scholar 

  12. Erskine L, Reijntjes S, Pratt T, Denti L, Schwarz Q, Vieira JM, Alakakone B, Shewan D, Ruhrberg C (2011) VEGF signaling through neuropilin 1 guides commissural axon crossing at the optic chiasm. Neuron 70(5):951–965. doi:10.1016/j.neuron.2011.02.052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Rosenstein JM, Mani N, Khaibullina A, Krum JM (2003) Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J Neurosci 23(35):11036–11044

    CAS  PubMed  Google Scholar 

  14. Ruiz de Almodovar C, Coulon C, Salin PA, Knevels E, Chounlamountri N, Poesen K, Hermans K, Lambrechts D, Van Geyte K, Dhondt J, Dresselaers T, Renaud J, Aragones J, Zacchigna S, Geudens I, Gall D, Stroobants S, Mutin M, Dassonville K, Storkebaum E, Jordan BF, Eriksson U, Moons L, D'Hooge R, Haigh JJ, Belin MF, Schiffmann S, Van Hecke P, Gallez B, Vinckier S, Chedotal A, Honnorat J, Thomasset N, Carmeliet P, Meissirel C (2010) Matrix-binding vascular endothelial growth factor (VEGF) isoforms guide granule cell migration in the cerebellum via VEGF receptor Flk1. J Neurosci 30(45):15052–15066. doi:10.1523/jneurosci.0477-10.2010

    Article  CAS  PubMed  Google Scholar 

  15. Licht T, Eavri R, Goshen I, Shlomai Y, Mizrahi A, Keshet E (2010) VEGF is required for dendritogenesis of newly born olfactory bulb interneurons. Development 137(2):261–271. doi:10.1242/dev.039636

    Article  CAS  PubMed  Google Scholar 

  16. Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R, Segal M, Yirmiya R, Keshet E (2011) Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci U S A 108(12):5081–5086. doi:10.1073/pnas.1007640108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J 15(7):1218–1220

    CAS  PubMed  Google Scholar 

  18. Carmeliet P, Ruiz de Almodovar C (2013) VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration. Cell Mol Life Sci 70(10):1763–1778. doi:10.1007/s00018-013-1283-7

    Article  CAS  PubMed  Google Scholar 

  19. Llado J, Tolosa L, Olmos G (2013) Cellular and molecular mechanisms involved in the neuroprotective effects of VEGF on motoneurons. Front Cell Neurosci 7:181. doi:10.3389/fncel.2013.00181

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gerber H-P, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628. doi:10.1038/9467

    Article  CAS  PubMed  Google Scholar 

  21. Choi UH, Ha Y, Huang X, Park SR, Chung J, Hyun DK, Park H, Park HC, Kim SW, Lee M (2007) Hypoxia-inducible expression of vascular endothelial growth factor for the treatment of spinal cord injury in a rat model. J Neurosurg Spine 7(1):54–60. doi:10.3171/spi-07/07/054

    Article  PubMed  Google Scholar 

  22. Krum JM, Mani N, Rosenstein JM (2008) Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp Neurol 212(1):108–117. doi:10.1016/j.expneurol.2008.03.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P (2009) Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 89(2):607–648. doi:10.1152/physrev.00031.2008

    Article  CAS  PubMed  Google Scholar 

  24. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S, Theilmeier G, Dewerchin M, Laudenbach V, Vermylen P, Raat H, Acker T, Vleminckx V, Van Den Bosch L, Cashman N, Fujisawa H, Drost MR, Sciot R, Bruyninckx F, Hicklin DJ, Ince C, Gressens P, Lupu F, Plate KH, Robberecht W, Herbert JM, Collen D, Carmeliet P (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28(2):131–138. doi:10.1038/88842

    Article  CAS  PubMed  Google Scholar 

  25. Gourie-Devi M, Nalini A, Subbakrishna DK (1997) Temporary amelioration of symptoms with intravenous cyclophosphamide in amyotrophic lateral sclerosis. J Neurol Sci 150(2):167–172

    Article  CAS  PubMed  Google Scholar 

  26. Lambrechts D, Storkebaum E, Carmeliet P (2004) VEGF: necessary to prevent motoneuron degeneration, sufficient to treat ALS? Trends Mol Med 10(6):275–282. doi:10.1016/j.molmed.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  27. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429(6990):413–417. doi:10.1038/nature02544

    Article  CAS  PubMed  Google Scholar 

  28. Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H, Van Damme P, Rutten B, Man WY, De Mol M, Wyns S, Manka D, Vermeulen K, Van Den Bosch L, Mertens N, Schmitz C, Robberecht W, Conway EM, Collen D, Moons L, Carmeliet P (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8(1):85–92. doi:10.1038/nn1360

    Article  CAS  PubMed  Google Scholar 

  29. Kulshreshtha D, Vijayalakshmi K, Alladi PA, Sathyaprabha TN, Nalini A, Raju TR (2011) Vascular endothelial growth factor attenuates neurodegenerative changes in the NSC-34 motor neuron cell line induced by cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients. Neurodegener Dis 8(5):322–330. doi:10.1159/000323718

    Article  CAS  PubMed  Google Scholar 

  30. Miller RG, Anderson F, Brooks BR, Mitsumoto H, Bradley WG, Ringel SP (2009) Outcomes research in amyotrophic lateral sclerosis: lessons learned from the amyotrophic lateral sclerosis clinical assessment, research, and education database. Ann Neurol 65(Suppl 1):S24–S28. doi:10.1002/ana.21556

    Article  PubMed  Google Scholar 

  31. Vijayalakshmi K, Alladi PA, Sathyaprabha TN, Subramaniam JR, Nalini A, Raju TR (2009) Cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients induces degeneration of a cultured motor neuron cell line. Brain Res 1263:122–133. doi:10.1016/j.brainres.2009.01.041

    Article  CAS  PubMed  Google Scholar 

  32. Alladi PA, Mahadevan A, Yasha TC, Raju TR, Shankar SK, Muthane U (2009) Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: relevance to lower incidence of Parkinson's disease. Neuroscience 159(1):236–245. doi:10.1016/j.neuroscience.2008.11.051

    Article  CAS  PubMed  Google Scholar 

  33. Vijayalakshmi K, Alladi PA, Ghosh S, Prasanna VK, Sagar BC, Nalini A, Sathyaprabha TN, Raju TR (2011) Evidence of endoplasmic reticular stress in the spinal motor neurons exposed to CSF from sporadic amyotrophic lateral sclerosis patients. Neurobiol Dis 41(3):695–705. doi:10.1016/j.nbd.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  34. Alladi PA, Wadhwa S, Singh N (2002) Effect of prenatal auditory enrichment on developmental expression of synaptophysin and syntaxin 1 in chick brainstem auditory nuclei. Neuroscience 114(3):577–590

    Article  CAS  PubMed  Google Scholar 

  35. Shobha K, Vijayalakshmi K, Alladi PA, Nalini A, Sathyaprabha TN, Raju TR (2007) Altered in-vitro and in-vivo expression of glial glutamate transporter-1 following exposure to cerebrospinal fluid of amyotrophic lateral sclerosis patients. J Neurol Sci 254(1–2):9–16. doi:10.1016/j.jns.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  36. Deepa P, Shahani N, Alladi PA, Vijayalakshmi K, Sathyaprabha TN, Nalini A, Ravi V, Raju TR (2011) Down regulation of trophic factors in neonatal rat spinal cord after administration of cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients. J Neural Transm 118(4):531–538. doi:10.1007/s00702-010-0520-6

    Article  CAS  PubMed  Google Scholar 

  37. Gunasekaran R, Narayani RS, Vijayalakshmi K, Alladi PA, Shobha K, Nalini A, Sathyaprabha TN, Raju TR (2009) Exposure to cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients alters Nav1.6 and Kv1.6 channel expression in rat spinal motor neurons. Brain Res 1255:170–179. doi:10.1016/j.brainres.2008.11.099

    Article  CAS  PubMed  Google Scholar 

  38. Shahani N, Gourie-Devi M, Nalini A, Raju TR (2001) Cyclophosphamide attenuates the degenerative changes induced by CSF from patients with amyotrophic lateral sclerosis in the neonatal rat spinal cord. J Neurol Sci 185(2):109–118

    Article  CAS  PubMed  Google Scholar 

  39. Ramamohan PY, Gourie-Devi M, Nalini A, Shobha K, Ramamohan Y, Joshi P, Raju TR (2007) Cerebrospinal fluid from amyotrophic lateral sclerosis patients causes fragmentation of the Golgi apparatus in the neonatal rat spinal cord. Amyotroph Lateral Scler 8(2):79–82. doi:10.1080/08037060601145489

    Article  CAS  PubMed  Google Scholar 

  40. Shobha K, Alladi PA, Nalini A, Sathyaprabha TN, Raju TR (2010) Exposure to CSF from sporadic amyotrophic lateral sclerosis patients induces morphological transformation of astroglia and enhances GFAP and S100beta expression. Neurosci Lett 473(1):56–61. doi:10.1016/j.neulet.2010.02.022

    Article  CAS  PubMed  Google Scholar 

  41. Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58(5):459–471

    Article  CAS  PubMed  Google Scholar 

  42. Sathasivam S, Grierson AJ, Shaw PJ (2005) Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibition. Neuropathol Appl Neurobiol 31(5):467–485. doi:10.1111/j.1365-2990.2005.00658.x

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Ona VO, Guegan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288(5464):335–339

    Article  CAS  PubMed  Google Scholar 

  44. Portera-Cailliau C, Price DL, Martin LJ (1997) Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol 378(1):70–87

    CAS  PubMed  Google Scholar 

  45. Zhao Y, Fedczyna TO, McVicker V, Caliendo J, Li H, Pachman LM (2007) Apoptosis in the skeletal muscle of untreated children with juvenile dermatomyositis: impact of duration of untreated disease. Clin Immunol 125(2):165–172. doi:10.1016/j.clim.2007.06.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Eggett CJ, Crosier S, Manning P, Cookson MR, Menzies FM, McNeil CJ, Shaw PJ (2000) Development and characterisation of a glutamate-sensitive motor neurone cell line. J Neurochem 74(5):1895–1902

    Article  CAS  PubMed  Google Scholar 

  47. Ho BK, Alexianu ME, Colom LV, Mohamed AH, Serrano F, Appel SH (1996) Expression of calbindin-D28K in motoneuron hybrid cells after retroviral infection with calbindin-D28K cDNA prevents amyotrophic lateral sclerosis IgG-mediated cytotoxicity. Proc Natl Acad Sci U S A 93(13):6796–6801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bogaert E, Van Damme P, Poesen K, Dhondt J, Hersmus N, Kiraly D, Scheveneels W, Robberecht W, Van Den Bosch L (2010) VEGF protects motor neurons against excitotoxicity by upregulation of GluR2. Neurobiol Aging 31(12):2185–2191. doi:10.1016/j.neurobiolaging.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  49. Tolosa L, Mir M, Olmos G, Llado J (2009) Vascular endothelial growth factor protects motoneurons from serum deprivation-induced cell death through phosphatidylinositol 3-kinase-mediated p38 mitogen-activated protein kinase inhibition. Neuroscience 158(4):1348–1355. doi:10.1016/j.neuroscience.2008.10.060

    Article  CAS  PubMed  Google Scholar 

  50. Tovar-y-Romo LB, Tapia R (2012) Delayed administration of VEGF rescues spinal motor neurons from death with a short effective time frame in excitotoxic experimental models in vivo. ASN Neuro 4(2). doi:10.1042/an20110057

  51. Brockington A, Wharton SB, Fernando M, Gelsthorpe CH, Baxter L, Ince PG, Lewis CE, Shaw PJ (2006) Expression of vascular endothelial growth factor and its receptors in the central nervous system in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 65(1):26–36

    Article  CAS  PubMed  Google Scholar 

  52. Tovar YRLB, Tapia R (2010) VEGF protects spinal motor neurons against chronic excitotoxic degeneration in vivo by activation of PI3-K pathway and inhibition of p38MAPK. J Neurochem 115(5):1090–1101. doi:10.1111/j.1471-4159.2010.06766.x

    Article  Google Scholar 

  53. Lunn JS, Sakowski SA, Kim B, Rosenberg AA, Feldman EL (2009) Vascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degeneration. Dev Neurobiol 69(13):871–884. doi:10.1002/dneu.20747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly funded by the National Institute of Mental Health and Neurosciences and Indian Council for Medical Research (5/4-5/7-Neuro/2009-NCD-I dated 16/3/2010). Sailendra K and Lalitha Vishwanath, project trainees, performed the offline quantification of VEGFR2 and calbindin, respectively. Research Associateship for VK was funded by Council for Scientific and Industrial Research (CSIR), Government of India. SS and AMV are CSIR Senior Research Fellows. PSM is a UGC-CSIR Senior Research Fellow. SR is a Senior Research Fellow in the project funded by ICMR.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phalguni Anand Alladi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, K., Ostwal, P., Sumitha, R. et al. Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line. Mol Neurobiol 51, 995–1007 (2015). https://doi.org/10.1007/s12035-014-8757-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8757-y

Keywords

Navigation