Skip to main content

Advertisement

Log in

Preconditioning as a Potential Strategy for the Prevention of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. A numerous of cellular processes including oxidative stress, mitochondrial dysfunction, and accumulation of α-synuclein aggregates are considered to contribute to the pathogenesis of Parkinson’s disease. A further understanding of the cellular and molecular mechanisms involved in the pathophysiology of PD is crucial for developing effective diagnostic, preventative, and therapeutic strategies to cure this devastating disorder. Preconditioning (PC) is assumed as a natural adaptive process whereby a subthreshold stimulus can promote protection against a subsequent lethal stimulus in the brain as well as in other tissues that affords robust brain tolerance facing neurodegenerative insults. Multiple lines of evidence have demonstrated that preconditioning as a possible neuroprotective technique may reduce the neural deficits associated with neurodegenerative diseases such as PD. Throughout the last few decades, a lot of efforts have been made to discover the molecular determinants involved in preconditioning-induced protective responses; although, the accurate mechanisms underlying this “tolerance” phenomenon are not fully understood in PD. In this review, we will summarize pathophysiology and current therapeutic approaches in PD and discuss about preconditioning in PD as a potential neuroprotective strategy. Also the role of gene reprogramming and mitochondrial biogenesis involved in the preconditioning-mediated neuroprotective events will be highlighted. Preconditioning may represent a promising therapeutic weapon to combat neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tomiyama H, Mizuta I, Li Y, Funayama M, Yoshino H, Li L, Murata M, Yamamoto M, Kubo SI, Mizuno Y, Toda T, Hattori N (2008) LRRK2 P755L variant in sporadic Parkinson’s disease. J Hum Genet 53(11–12):1012–1015. doi:10.1007/s10038-008-0336-5

    CAS  PubMed  Google Scholar 

  2. Tomas-Camardiel M, Rite I, Herrera AJ, de Pablos RM, Cano J, Machado A, Venero JL (2004) Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood–brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 16(1):190–201. doi:10.1016/j.nbd.2004.01.010

    CAS  PubMed  Google Scholar 

  3. Korecka JA, Eggers R, Swaab DF, Bossers K, Verhaagen J (2013) Modeling early Parkinson’s disease pathology with chronic low dose MPTP treatment. Restor Neurol Neurosci 31(2):155–167

    CAS  PubMed  Google Scholar 

  4. Greenamyre JT, Hastings TG (2004) Parkinson’s: divergent causes, convergent mechanisms. Science 304(5674):1120–1122

    CAS  PubMed  Google Scholar 

  5. Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C (2011) Life span and locomotor activity modification by glucose and polyphenols in Drosophila melanogaster chronically exposed to oxidative stress-stimuli: implications in Parkinson’s disease. Neurochem Res 36(6):1073–1086

    CAS  PubMed  Google Scholar 

  6. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88(1):211–247

    CAS  PubMed  Google Scholar 

  7. Taylor TN, Caudle WM, Shepherd KR, Noorian A, Jackson CR, Iuvone PM, Weinshenker D, Greene JG, Miller GW (2009) Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. J Neurosci 29(25):8103–8113

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Gálvez-Jiménez N, Lang AE (2004) The perioperative management of Parkinson’s disease revisited. Neurol Clin 22(2):367–377

    PubMed  Google Scholar 

  9. Pandya M, Kubu CS, Giroux ML (2008) Parkinson disease: not just a movement disorder. Cleve Clin J Med 75(12):856–864

    PubMed  Google Scholar 

  10. Poewe W (2008) Non‐motor symptoms in Parkinson’s disease. Eur J Neurol 15(s1):14–20

    PubMed  Google Scholar 

  11. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376

    CAS  PubMed  Google Scholar 

  12. Locke CJ, Fox SA, Caldwell GA, Caldwell KA (2008) Acetaminophen attenuates dopamine neuron degeneration in animal models of Parkinson’s disease. Neurosci Lett 439(2):129–133. doi:10.1016/j.neulet.2008.05.003

    CAS  PubMed  Google Scholar 

  13. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306

    CAS  PubMed  Google Scholar 

  14. Gröger A, Bender B, Wurster I, Chadzynski GL, Klose U, Berg D (2013) Differentiation between idiopathic and atypical parkinsonian syndromes using three-dimensional magnetic resonance spectroscopic imaging. J Neurol Neurosurg Psychiatry 84(6):644–649

    PubMed  Google Scholar 

  15. Francis PT, Perry EK (2007) Cholinergic and other neurotransmitter mechanisms in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Mov Disord 22(S17):S351–S357

    PubMed  Google Scholar 

  16. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60(3):337

    PubMed  Google Scholar 

  17. Wang S, Yan J-Y, Lo Y-K, Carvey PM, Ling Z (2009) Dopaminergic and serotoninergic deficiencies in young adult rats prenatally exposed to the bacterial lipopolysaccharide. Brain Res 1265:196–204

    CAS  PubMed  Google Scholar 

  18. Braak H, Tredici KD, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    PubMed  Google Scholar 

  19. Duran R, Barrero FJ, Morales B, Luna JD, Ramirez M, Vives F (2010) Oxidative stress and aminopeptidases in Parkinson’s disease patients with and without treatment. Neurodegener Dis 8(3):109–116

    PubMed  Google Scholar 

  20. Collins LM, Toulouse A, Connor TJ, Nolan YM (2012) Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 62(7):2154–2168. doi:10.1016/j.neuropharm.2012.01.028

    CAS  PubMed  Google Scholar 

  21. Hattingen E, Magerkurth J, Pilatus U, Mozer A, Seifried C, Steinmetz H, Zanella F, Hilker R (2009) Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain 132(12):3285–3297

    PubMed  Google Scholar 

  22. Anne Stetler R, Leak RK, Yin W, Zhang L, Wang S, Gao Y, Chen J (2012) Mitochondrial biogenesis contributes to ischemic neuroprotection afforded by LPS preconditioning. J Neurochem 123(s2):125–137

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Weise J, Engelhorn T, Dörfler A, Aker S, Bähr M, Hufnagel A (2005) Expression time course and spatial distribution of activated caspase-3 after experimental status epilepticus: contribution of delayed neuronal cell death to seizure-induced neuronal injury. Neurobiol Dis 18(3):582–590

    CAS  PubMed  Google Scholar 

  24. Folbergrová J, Ješina P, Haugvicová R, Lisý V, Houštěk J (2010) Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem Int 56(3):394–403

    PubMed  Google Scholar 

  25. Krieger C, Duchen MR (2002) Mitochondria, Ca(2+) and neurodegenerative disease. Eur J Pharmacol 447(2–3):177–188. doi:10.1016/s0014-2999(02)01842-3

    CAS  PubMed  Google Scholar 

  26. J-z H, Chen Y-z SM, H-f Z, Y-p Y, Chen J, Liu C-F (2010) dl-3-n-Butylphthalide prevents oxidative damage and reduces mitochondrial dysfunction in an MPP+-induced cellular model of Parkinson’s disease. Neurosci Lett 475(2):89–94

    Google Scholar 

  27. Chuang Y-C, Lin T-K, Huang H-Y, Chang W-N, Liou C-W, Chen S-D, Chang AY, Chan SH (2012) Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus. J Neuroinflammation 9(1):1–18

    Google Scholar 

  28. Folbergrová J, Ješina P, Drahota Z, Lisý V, Haugvicová R, Vojtíšková A, Houštěk J (2007) Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp Neurol 204(2):597–609

    PubMed  Google Scholar 

  29. Malinska D, Kulawiak B, Kudin AP, Kovacs R, Huchzermeyer C, Kann O, Szewczyk A, Kunz WS (2010) Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation. Biochim Biophys Acta Bioenerg 1797(6):1163–1170

    CAS  Google Scholar 

  30. Schapira AHV (2001) Causes of neuronal death in Parkinson’s disease. In: Calne D, Calne SM (eds) Parkinson’s disease, vol 86, Advances in neurology. Lippincott Williams & Wilkins, Philadelphia, pp 155–162

    Google Scholar 

  31. Zhang H, Jia H, Liu J, Ao N, Yan B, Shen W, Wang X, Li X, Luo C, Liu J (2010) Combined R‐α–lipoic acid and acetyl‐L‐carnitine exerts efficient preventative effects in a cellular model of Parkinson’s disease. J Cell Mol Med 14(1–2):215–225

    CAS  PubMed  Google Scholar 

  32. Marongiu R, Spencer B, Crews L, Adame A, Patrick C, Trejo M, Dallapiccola B, Valente EM, Masliah E (2009) Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. J Neurochem 108(6):1561–1574

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Thomas RR, Keeney PM, Bennett JP (2012) Impaired complex-I mitochondrial biogenesis in Parkinson disease frontal cortex. J Parkinsons Dis 2(1):67–76

    CAS  PubMed  Google Scholar 

  34. Ng C-H, Guan MS, Koh C, Ouyang X, Yu F, Tan E-K, O’Neill SP, Zhang X, Chung J, Lim K-L (2012) AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. J Neurosci 32(41):14311–14317

    CAS  PubMed  Google Scholar 

  35. Choi HJ, Lee SY, Cho Y, No H, Kim SW, Hwang O (2006) Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: implications for Parkinson’s disease. Neurochem Int 48(4):255–262

    CAS  PubMed  Google Scholar 

  36. Becerra A, Echeverría C, Varela D, Sarmiento D, Armisén R, Nuñez-Villena F, Montecinos M, Simon F (2011) Transient receptor potential melastatin 4 inhibition prevents lipopolysaccharide-induced endothelial cell death. Cardiovasc Res 91(4):677–684

    CAS  PubMed  Google Scholar 

  37. Khan MM, Raza SS, Javed H, Ahmad A, Khan A, Islam F, Safhi MM, Islam F (2012) Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotox res 22(1):1–15

    PubMed  Google Scholar 

  38. Xue Y, Xie N, Cao L, Zhao X, Jiang H, Chi Z (2011) Diazoxide preconditioning against seizure-induced oxidative injury is via the PI3K/Akt pathway in epileptic rat. Neurosci Lett 495(2):130–134

    CAS  PubMed  Google Scholar 

  39. Verma R, Nehru B (2009) Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson’s disease. Neurochem Int 55(6):369–375

    CAS  PubMed  Google Scholar 

  40. Lotharius J, O’Malley KL (2000) The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation—a novel mechanism of toxicity. J Biol Chem 275(49):38581–38588. doi:10.1074/jbc.M005385200

    CAS  PubMed  Google Scholar 

  41. Bauereis B, Haskins WE, LeBaron RG, Renthal R (2011) Proteomic insights into the protective mechanisms of an in vitro oxidative stress model of early stage Parkinson’s disease. Neurosci Lett 488(1):11–16

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha T, Bharath MS, Shankar S (2011) Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 36(8):1452–1463

    CAS  PubMed  Google Scholar 

  43. Yu J, Lyubchenko YL (2009) Early stages for Parkinson’s development: α-Synuclein misfolding and aggregation. J Neuroimmune Pharmacol 4(1):10–16

    PubMed  Google Scholar 

  44. Jang A, Lee HJ, Suk JE, Jung JW, Kim KP, Lee SJ (2010) Non‐classical exocytosis of α‐synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem 113(5):1263–1274

    CAS  PubMed  Google Scholar 

  45. Song W, Patel A, Qureshi HY, Han D, Schipper HM, Paudel HK (2009) The Parkinson disease‐associated A30P mutation stabilizes α‐synuclein against proteasomal degradation triggered by heme oxygenase‐1 over‐expression in human neuroblastoma cells. J Neurochem 110(2):719–733

    CAS  PubMed  Google Scholar 

  46. Stone DK, Kiyota T, Mosley RL, Gendelman HE (2012) A model of nitric oxide induced alpha-synuclein misfolding in Parkinson’s disease. Neurosci Lett 523(2):167–173. doi:10.1016/j.neulet.2012.06.070

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Gu Z, Nakamura T, Lipton SA (2010) Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 41(2–3):55–72

    CAS  PubMed  Google Scholar 

  48. Chin MH, Qian W-J, Wang H, Petyuk VA, Bloom JS, Sforza DM, Laćan G, Liu D, Khan AH, Cantor RM (2008) Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease. J Proteome Res 7(2):666–677

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Zou T, Xiao B, Tang J, Zhang H, Tang X (2012) Downregulation of Pael-R expression in a Parkinson’s disease cell model reduces apoptosis. Journal of Clinical Neuroscience

  50. Meredith G, Totterdell S, Beales M, Meshul C (2009) Impaired glutamate homeostasis and programmed cell death in a chronic MPTP mouse model of Parkinson’s disease. Exp Neurol 219(1):334–340

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Ho CC-Y, Rideout HJ, Ribe E, Troy CM, Dauer WT (2009) The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J Neurosci 29(4):1011–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Zhang S, Wang J, Song N, Xie J, Jiang H (2009) Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in MES23. 5 cells. Neurobiol Aging 30(9):1466–1476

    CAS  PubMed  Google Scholar 

  53. Bournival J, Quessy P, Martinoli M-G (2009) Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol 29(8):1169–1180

    CAS  PubMed  Google Scholar 

  54. Kaur H, Chauhan S, Sandhir R (2011) Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson’s disease. Neurochem Res 36(8):1435–1443

    CAS  PubMed  Google Scholar 

  55. Burguillos M, Hajji N, Englund E, Persson A, Cenci A, Machado A, Cano J, Joseph B, Venero J (2011) Apoptosis-inducing factor mediates dopaminergic cell death in response to LPS-induced inflammatory stimulus: evidence in Parkinson’s disease patients. Neurobiol Dis 41(1):177–188

    CAS  PubMed  Google Scholar 

  56. Anandhan A, Essa MM, Manivasagam T (2013) Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson’s disease. Neurotox res 23(2):166–173

    CAS  PubMed  Google Scholar 

  57. Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15(11):4829–4840. doi:10.1091/mbc.E04-06-0477

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348(14):1356–1364

    Google Scholar 

  59. Slaughter JR, Slaughter KA, Nichols D, Holmes SE, Martens MP (2001) Prevalence, clinical manifestations, etiology, and treatment of depression in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 13(2):187–196

    CAS  PubMed  Google Scholar 

  60. Leak RK, Liou AK, Zigmond MJ (2006) Effect of sublethal 6-hydroxydopamine on the response to subsequent oxidative stress in dopaminergic cells: evidence for preconditioning. J Neurochem 99(4):1151–1163

    CAS  PubMed  Google Scholar 

  61. Schapira AHV, Olanow CW (2004) Neuroprotection in Parkinson disease—mysteries, myths, and misconceptions. Jama-J Am Med Assoc 291(3):358–364. doi:10.1001/jama.291.3.358

    CAS  Google Scholar 

  62. Bahat-Stroomza M, Barhum Y, Levy YS, Karpov O, Bulvik S, Melamed E, Offen D (2009) Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson’s disease. J Mol Neurosci 39(1–2):199–210. doi:10.1007/s12031-008-9166-3

    CAS  PubMed  Google Scholar 

  63. Dupre KB, Eskow KL, Steiniger A, Klioueva A, Negron GE, Lormand L, Park JY, Bishop C (2008) Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on L-DOPA-induced dyskinesia and rotational behaviors in the hemi-parkinsonian rat. Psychopharmacology 199(1):99–108

    CAS  PubMed  Google Scholar 

  64. Schrag A, Quinn N (2000) Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain 123(11):2297–2305

    PubMed  Google Scholar 

  65. Beric A, Kelly PJ, Rezai A, Sterio D, Mogilner A, Zonenshayn M, Kopell B (2002) Complications of deep brain stimulation surgery. Stereotact Funct Neurosurg 77(1–4):73–78

    Google Scholar 

  66. Umemura A, Jaggi JL, Hurtig HI, Siderowf AD, Colcher A, Stern MB, Baltuch GH (2003) Deep brain stimulation for movement disorders: morbidity and mortality in 109 patients. J Neurosurg 98(4):779–784. doi:10.3171/jns.2003.98.4.0779

    PubMed  Google Scholar 

  67. Tan X, Zhang L, Qin J, Tian M, Zhu H, Dong C, Zhao H, Jin G (2012) Transplantation of neural stem cells co-transfected with Nurr1 and Brn4 for treatment of Parkinsonian rats. International Journal of Developmental Neuroscience

  68. Olanow CW, Kordower JH, Lang AE, Obeso JA (2009) Dopaminergic transplantation for Parkinson’s disease: current status and future prospects. Ann Neurol 66(5):591–596. doi:10.1002/ana.21778

    CAS  PubMed  Google Scholar 

  69. O’Keeffe FE, Scott SA, Tyers P, O’Keeffe GW, Dalley JW, Zufferey R, Caldwell MA (2008) Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain 131(3):630–641

    PubMed  Google Scholar 

  70. Huang RQ, Ke WL, Liu Y, Wu DD, Feng LY, Jiang C, Pei YY (2010) Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci 290(1–2):123–130. doi:10.1016/j.jns.2009.09.032

    CAS  PubMed  Google Scholar 

  71. Wettergren EE, Gussing F, Quintino L, Lundberg C (2012) Novel disease-specific promoters for use in gene therapy for Parkinson’s disease. Neuroscience letters

  72. Feng LR, Maguire-Zeiss KA (2010) Gene therapy in Parkinson’s disease rationale and current status. Cns Drugs 24(3):177–192

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Antony S, DebRoy P, Vadivelan R, Jaysankar K, Vikram M, Nandini S, Sundeep M, Elango K, Suresh B (2010) Amelioration of CNS toxicities of L-dopa in experimental models of Parkinson’s disease by concurrent treatment with Tinospora cordifolia. Hygeia J D Med 2(1):28–37

    Google Scholar 

  74. Kim JH, Lee HW, Hwang J, Kim J, Lee MJ, Han HS, Lee WH, Suk K (2012) Microglia-inhibiting activity of Parkinson’s disease drug amantadine. Neurobiol Aging 33(9):2145–2159. doi:10.1016/j.neurobiolaging.2011.08.011

    CAS  PubMed  Google Scholar 

  75. Yuan H, Zhang ZW, Liang LW, Shen Q, Wang XD, Ren SM, Ma HJ, Jiao SJ, Liu P (2010) Treatment strategies for Parkinson’s disease. Neurosci Bull 26(1):66–76. doi:10.1007/s12264-010-0302-z

    CAS  PubMed  Google Scholar 

  76. Tribl GG, Wober C, Schonborn V, Brucke T, Deecke L, Panzer S (2001) Amantadine in Parkinson’s disease: lymphocyte subsets and IL-2 secreting T cell precursor frequencies. Exp Gerontol 36(10):1761–1771. doi:10.1016/s0531-5565(01)00128-0

    CAS  PubMed  Google Scholar 

  77. Navailles S, Bioulac B, Gross C, De Deurwaerdère P (2011) Chronic L-DOPA therapy alters central serotonergic function and L-DOPA-induced dopamine release in a region-dependent manner in a rat model of Parkinson’s disease. Neurobiol Dis 41(2):585–590

    CAS  PubMed  Google Scholar 

  78. Poewe W (2006) The need for neuroprotective therapies in Parkinson’s disease A clinical perspective. Neurology 66(10 suppl 4):S2–S9

    PubMed  Google Scholar 

  79. Reimers D, Herranz AS, Diaz-Gil JJ, Lobo MVT, Paíno CL, Alonso R, Asensio MJ, Gonzalo-Gobernado R, Bazán E (2006) Intrastriatal infusion of liver growth factor stimulates dopamine terminal sprouting and partially restores motor function in 6-hydroxydopamine-lesioned rats. J Histochem Cytochem 54(4):457–465

    CAS  PubMed  Google Scholar 

  80. Colafrancesco V, Villoslada P (2011) Targeting NGF-pathway for developing neuroprotective therapies for multiple sclerosis and other neurological diseases. Arch Ital Biol 149(2):183–192

    PubMed  Google Scholar 

  81. Jin F, Wu Q, Lu Y-F, Gong Q-H, Shi J-S (2008) Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol 600(1):78–82

    CAS  PubMed  Google Scholar 

  82. Casper D, Yaparpalvi U, Rempel N, Werner P (2000) Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci Lett 289(3):201–204

    CAS  PubMed  Google Scholar 

  83. Krauss JK, Jankovic J (1996) Surgical treatment of Parkinson’s disease. Am Fam Physician 54(5):1621–1629

    CAS  PubMed  Google Scholar 

  84. Olanow CW (2008) Levodopa/dopamine replacement strategies in Parkinson’s disease—Future directions. Mov Disord 23:S613–S622. doi:10.1002/mds.22061

    PubMed  Google Scholar 

  85. Singh N, Pillay V, Choonara YE (2007) Advances in the treatment of Parkinson’s disease. Prog Neurobiol 81(1):29–44

    CAS  PubMed  Google Scholar 

  86. Betchen SA, Kaplitt M (2003) Future and current surgical therapies in Parkinson’s disease. Curr Opin Neurol 16(4):487–493

    PubMed  Google Scholar 

  87. Thevathasan W, Coyne TJ, Hyam JA, Kerr G, Jenkinson N, Aziz TZ, Silburn PA (2011) Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery 69(6):1248–1254

    PubMed  Google Scholar 

  88. Chao Y, Gang L, Na Z, Ming W, Zhong W, Mian W (2007) Surgical management of parkinson’s disease: update and review. Interv Neuroradiol 13(4):359

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Kelly PJ, Ahlskog J, Goerss SJ, Daube JR, Duffy JR, Kall BA Computer-assisted stereotactic ventralis lateralis thalamotomy with microelectrode recording control in patients with Parkinson’s disease. In: Mayo Clinic Proceedings, 1987. vol 8. Elsevier, pp 655–664

  90. Matsumoto K, Asano T, Baba T, Miyamoto T, Ohmoto T (1976) Long-term follow-up results of bilateral thalamotomy for parkinsonism. Stereotact Funct Neurosurg 39(3–4):257–260

    Google Scholar 

  91. Hamani C, Neimat J (2006) Deep brain stimulation for the treatment of Parkinson’s disease. Parkinson’s Disease and Related Disorders. Springer, In, pp 393–399

    Google Scholar 

  92. Drucker-Colín R, Verdugo-Díaz L (2004) Cell transplantation for Parkinson’s disease: present status. Cell Mol Neurobiol 24(3):301–316

    PubMed  Google Scholar 

  93. Lindvall O, Björklund A (2004) Cell therapy in Parkinson’s disease. NeuroRx 1(4):382–393

    PubMed Central  PubMed  Google Scholar 

  94. Cova L, Armentero M-T, Zennaro E, Calzarossa C, Bossolasco P, Lambertenghi Deliliers G, Polli E, Nappi G, Silani V, Blandini F (2010) Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain research 1311:12–27

    CAS  PubMed  Google Scholar 

  95. Okano H, Sakaguchi M, Ohki K, Suzuki N, Sawamoto K (2007) Regeneration of the central nervous system using endogenous repair mechanisms. J Neurochem 102(5):1459–1465

    CAS  PubMed  Google Scholar 

  96. Ren Z, Wang J, Wang S, Zou C, Li X, Guan Y, Chen Z, Zhang YA (2013) Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys. Sci rep 3

  97. Ziavra D, Makri G, Giompres P, Taraviras S, Thomaidou D, Matsas R, Mitsacos A, Kouvelas ED (2012) Neural stem cells transplanted in a mouse model of Parkinson’s disease differentiate to neuronal phenotypes and reduce rotational deficit. CNS Neurol Disord Drug Targets 11(7):829–835

    CAS  PubMed  Google Scholar 

  98. Bouchez G, Sensebé L, Vourc’h P, Garreau L, Bodard S, Rico A, Guilloteau D, Charbord P, Besnard J-C, Chalon S (2008) Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochem Int 52(7):1332–1342

    CAS  PubMed  Google Scholar 

  99. Campeau L, Soler R, Sittadjody S, Pareta R, Nomiya M, Zarifpour M, Opara EC, Yoo JJ, Andersson KE (2013) Effects of allogeneic bone marrow-derived mesenchymal stromal cell therapy on voiding function in a rat model of Parkinson’s disease. The Journal of urology

  100. Yasuhara T, Date I (2009) Gene therapy for Parkinson’s disease. Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Springer, In, pp 301–309

    Google Scholar 

  101. Douglas MR (2013) Gene therapy for Parkinson’s disease: state-of-the-art treatments for neurodegenerative disease. Expert Rev Neurother 13(6):695–705

    CAS  PubMed  Google Scholar 

  102. Jerusalinsky D, Baez MV, Epstein AL (2012) Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases. J Physiol Paris 106(1–2):2–11. doi:10.1016/j.jphysparis.2011.11.003

    PubMed  Google Scholar 

  103. Leriche L, Bjorklund T, Breysse N, Besret L, Gregoire MC, Carlsson T, Dolle F, Mandel RJ, Deglon N, Hantraye P, Kirik D (2009) Positron emission tomography imaging demonstrates correlation between behavioral recovery and correction of dopamine neurotransmission after gene therapy. J Neurosci 29(5):1544–1553. doi:10.1523/jneurosci.4491-08.2009

    CAS  PubMed  Google Scholar 

  104. Ren X, Zhang T, Gong X, Hu G, Ding W, Wang X (2013) AAV2-mediated striatum delivery of human CDNF prevents the deterioration of midbrain dopamine neurons in a 6-hydroxydopamine induced parkinsonian rat model. Experimental neurology

  105. Cederfjäll E, Nilsson N, Sahin G, Chu Y, Nikitidou E, Björklund T, Kordower JH, Kirik D (2013) Continuous DOPA synthesis from a single AAV: dosing and efficacy in models of Parkinson’s disease. Sci rep 3

  106. Xilouri M, Brekk OR, Landeck N, Pitychoutis PM, Papasilekas T, Papadopoulou-Daifoti Z, Kirik D, Stefanis L (2013) Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration. Brain

  107. Steiner B, Witte V, Floel A (2011) Lifestyle and cognition. What do we know from the aging and neurodegenerative brain? Nervenarzt 82(12):1566–1577. doi:10.1007/s00115-011-3353-0

    CAS  PubMed  Google Scholar 

  108. Baroni L, Bonetto C, Tessan F, Goldin D, Cenci L, Magnanini P, Zuliani G (2011) Pilot dietary study with normoproteic protein-redistributed plant-food diet and motor performance in patients with Parkinson’s disease. Nutr Neurosci 14(1):1–9. doi:10.1179/174313211x12966635733231

    CAS  PubMed  Google Scholar 

  109. Cheng BH, Yang XX, An LX, Gao B, Liu X, Liu SW (2009) Ketogenic diet protects dopaminergic neurons against 6-OHDA neurotoxicity via up-regulating glutathione in a rat model of Parkinson’s disease. Brain Res 1286:25–31. doi:10.1016/j.brainres.2009.06.060

    CAS  PubMed  Google Scholar 

  110. Tajiri N, Yasuhara T, Shingo T, Kondo A, Yuan W, Kadota T, Wang F, Baba T, Tayra JT, Morimoto T (2010) Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res 1310:200–207

    CAS  PubMed  Google Scholar 

  111. Döbrössy MD, Dunnett SB (2003) Motor training effects on recovery of function after striatal lesions and striatal grafts. Exp Neurol 184(1):274–284

    PubMed  Google Scholar 

  112. Faherty CJ, Raviie Shepherd K, Herasimtschuk A, Smeyne RJ (2005) Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Mol Brain Res 134(1):170–179

    CAS  PubMed  Google Scholar 

  113. Wu SY, Wang TF, Yu L, Jen CJ, Chuang JI, Wu FS, Wu CW, Kuo YM (2011) Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun 25(1):135–146. doi:10.1016/j.bbi.2010.09.006

    CAS  PubMed  Google Scholar 

  114. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301

    CAS  PubMed  Google Scholar 

  115. Carro E, Nuñez A, Busiguina S, Torres-Aleman I (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20(8):2926–2933

    CAS  PubMed  Google Scholar 

  116. Assaf F, Fishbein M, Gafni M, Keren O, Sarne Y (2011) Pre-and post-conditioning treatment with an ultra-low dose of Δ < sup > 9</sup > −tetrahydrocannabinol (THC) protects against pentylenetetrazole (PTZ)-induced cognitive damage. Behav Brain Res 220(1):194–201

    CAS  PubMed  Google Scholar 

  117. Vandresen-Filho S, de Araújo HB, Franco JL, Boeck CR, Dafre AL, Tasca CI (2007) Evaluation of glutathione metabolism in NMDA preconditioning against quinolinic acid-induced seizures in mice cerebral cortex and hippocampus. Brain Res 1184:38–45

    CAS  PubMed  Google Scholar 

  118. de Araújo HB, Vandresen-Filho S, Martins WC, Boeck CR, Tasca CI (2011) NMDA preconditioning protects against quinolinic acid-induced seizures via PKA, PI3K and MAPK/ERK signaling pathways. Behav Brain Res 219(1):92–97

    Google Scholar 

  119. Dmowska M, Cybulska R, Schoenborn R, Piersiak T, Jaworska-Adamu J, Gawron A (2010) Behavioural and histological effects of preconditioning with lipopolysaccharide in epileptic rats. Neurochem Res 35(2):262–272

    CAS  PubMed  Google Scholar 

  120. Hickey E, Shi H, Van Arsdell G, Askalan R (2011) Lipopolysaccharide-induced preconditioning against ischemic injury is associated with changes in Toll-like receptor 4 expression in the rat developing brain. Pediatr Res 70(1):10–14

    CAS  PubMed  Google Scholar 

  121. Jimenez-Mateos EM, Hatazaki S, Johnson MB, Bellver-Estelles C, Mouri G, Bonner C, Prehn JH, Meller R, Simon RP, Henshall DC (2008) Hippocampal transcriptome after status epilepticus in mice rendered seizure damage-tolerant by epileptic preconditioning features suppressed calcium and neuronal excitability pathways. Neurobiol Dis 32(3):442–453

    CAS  PubMed  Google Scholar 

  122. Chen Z, Jalabi W, Shpargel KB, Farabaugh KT, Dutta R, Yin X, Kidd GJ, Bergmann CC, Stohlman SA, Trapp BD (2012) Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J Neurosci 32(34):11706–11715

    CAS  PubMed  Google Scholar 

  123. Tzeng YW, Lee LY, Chao PL, Lee HC, Wu RT, Lin AMY (2010) Role of autophagy in protection afforded by hypoxic preconditioning against MPP + −induced neurotoxicity in SH-SY5Y cells. Free Radic Biol Med 49(5):839–846. doi:10.1016/j.freeradbiomed.2010.06.004

    CAS  PubMed  Google Scholar 

  124. Orio M, Kunz A, Kawano T, Anrather J, Zhou P, Iadecola C (2007) Lipopolysaccharide induces early tolerance to excitotoxicity via nitric oxide and cGMP. Stroke 38(10):2812–2817. doi:10.1161/strokeaha.107.486837

    CAS  PubMed  Google Scholar 

  125. Racay P, Chomova M, Tatarkova Z, Kaplan P, Hatok J, Dobrota D (2009) Ischemia-induced mitochondrial apoptosis is significantly attenuated by ischemic preconditioning. Cell Mol Neurobiol 29(6–7):901–908

    CAS  PubMed  Google Scholar 

  126. Stenzel-Poore MP, Stevens SL, King JS, Simon RP (2007) Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes a speculative synthesis. Stroke 38(2):680–685

    PubMed  Google Scholar 

  127. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158(3):1007–1020. doi:10.1016/j.neuroscience.2008.07.067

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Stevens SL, Leung PY, Vartanian KB, Gopalan B, Yang T, Simon RP, Stenzel-Poore MP (2011) Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci 31(23):8456–8463. doi:10.1523/jneurosci.0821-11.2011

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, Harrington CA, Stenzel-Poore MP (2009) Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 29(31):9839–9849

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Vartanian KB, Stevens SL, Marsh BJ, Williams-Karnesky R, Lessov NS, Stenzel-Poore MP (2011) LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury. J Neuroinflammation 8(1):140

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, Meller R, Simon RP, Stenzel-Poore MP (2007) Endotoxin preconditioning protects against the cytotoxic effects of TNFα after stroke: a novel role for TNFα in LPS-ischemic tolerance. J Cereb Blood Flow Metab 27(10):1663–1674

    CAS  PubMed  Google Scholar 

  132. Arnold B, Cassady SJ, VanLaar VS, Berman SB (2011) Integrating multiple aspects of mitochondrial dynamics in neurons: age-related differences and dynamic changes in a chronic rotenone model. Neurobiol Dis 41(1):189–200

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Sheng B, Wang X, Su B, Hg L, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120(3):419–429

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Valerio A, Bertolotti P, Delbarba A, Perego C, Dossena M, Ragni M, Spano P, Carruba MO, De Simoni MG, Nisoli E (2011) Glycogen synthase kinase‐3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production. J Neurochem 116(6):1148–1159

    CAS  PubMed  Google Scholar 

  135. Cronin-Furman EN, Borland MK, Bergquist KE, Bennett JP Jr, Trimmer PA (2013) Mitochondrial quality, dynamics and functional capacity in Parkinson’s disease cybrid cell lines selected for Lewy body expression. Mol Neurodegener 8(1):6

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Keeney PM, Dunham LD, Quigley CK, Morton SL, Bergquist KE, Bennett JP (2009) Cybrid models of Parkinson’s disease show variable mitochondrial biogenesis and genotype-respiration relationships. Exp Neurol 220(2):374–382

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitara H, Yonekawa H, Piantadosi CA (2008) Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase dependent mechanism. J Neurosci 28(9):2015–2024. doi:10.1523/jneurosci.5654-07.2008

    CAS  PubMed  Google Scholar 

  138. Zhang Q, Wu Y, Zhang P, Sha H, Jia J, Hu Y, Zhu J (2012) Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience 205:10–17

    CAS  PubMed  Google Scholar 

  139. Han Y, Lin Y, Xie N, Xue Y, Tao H, Rui C, Xu J, Cao L, Liu X, Jiang H (2011) Impaired mitochondrial biogenesis in hippocampi of rats with chronic seizures. Neuroscience 194:234–240

    CAS  PubMed  Google Scholar 

  140. Vernochet C, Mourier A, Bezy O, Macotela Y, Boucher J, Rardin MJ, An D, Lee KY, Ilkayeva OR, Zingaretti CM (2012) Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance. Cell metabolism

  141. Yin W, Signore AP, Iwai M, Cao GD, Gao YQ, Chen J (2008) Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 39(11):3057–3063. doi:10.1161/strokeaha.108.520114

    PubMed Central  PubMed  Google Scholar 

  142. Raval AP, Dave KR, Perez-Pinzon MA (2006) Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 26(9):1141–1147. doi:10.1038/sj.jcbfm.9600262

    CAS  PubMed  Google Scholar 

  143. Ding Y, Li L (2008) Lipopolysaccharide preconditioning induces protection against lipopolysaccharide-induced neurotoxicity in organotypic midbrain slice culture. Neurosci bull 24(4):209–218

    CAS  PubMed  Google Scholar 

  144. Eklind S, Mallard C, Arvidsson P, Hagberg H (2005) Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain. Pediatr Res 58(1):112–116

    CAS  PubMed  Google Scholar 

  145. Fan HK, Cook JA (2004) Molecular mechanisms of endotoxin tolerance. J Endotoxin Res 10(2):71–84. doi:10.1179/096805104225003997

    CAS  PubMed  Google Scholar 

  146. Longhi L, Gesuete R, Perego C, Ortolano F, Sacchi N, Villa P, Stocchetti N, De Simoni M-G (2011) Long-lasting protection in brain trauma by endotoxin preconditioning. J Cereb Blood Flow Metab 31(9):1919–1929

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Longhi L, Perego C, Sacchi N, Zanier E, Ortolano F, Stocchetti N, McIntosh T, De Simoni MG (2009) LPS preconditioning attenuates neurobehavioral deficits following controlled cortical impact brain injury in mice. J Cereb Blood Flow Metab 29:S198–S199

    Google Scholar 

  148. Kumral A, Tuzun F, Ozbal S, Ergur BU, Yilmaz O, Duman N, Ozkan H (2012) Lipopolysaccharide-preconditioning protects against endotoxin-induced white matter injury in the neonatal rat brain. Brain Res 1489:81–89. doi:10.1016/j.brainres.2012.10.015

    CAS  PubMed  Google Scholar 

  149. Yu JT, Lee CH, Yoo KY, Choi JH, Li H, Park OK, Yan B, Hwang IK, Kwon YG, Kim YM, Won MH (2010) Maintenance of anti-inflammatory cytokines and reduction of glial activation in the ischemic hippocampal CA1 region preconditioned with lipopolysaccharide. J Neurol Sci 296(1–2):69–78. doi:10.1016/j.jns.2010.06.004

    CAS  PubMed  Google Scholar 

  150. Hiasa G, Hamada M, Ikeda S, Hiwada K (2001) Ischemic preconditioning and lipopolysaccharide attenuate nuclear factor-kappa B activation and gene expression of inflammatory cytokines in the ischemia-reperfused rat heart. Jpn Circ J-English Edition 65(11):984–990. doi:10.1253/jcj.65.984

    CAS  Google Scholar 

  151. Lin HY, Wu CL, Huang CC (2010) The Akt-endothelial nitric oxide synthase pathway in lipopolysaccharide preconditioning-induced hypoxic-ischemic tolerance in the neonatal rat brain. Stroke 41(7):1543–1551. doi:10.1161/strokeaha.109.574004

    CAS  PubMed  Google Scholar 

  152. Mirrione MM, Konomos DK, Gravanis I, Dewey SL, Aguzzi A, Heppner FL, Tsirka SE (2010) Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiol Dis 39(1):85–97

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Choi D-Y, Liu M, Hunter RL, Cass WA, Pandya JD, Sullivan PG, Shin E-J, Kim H-C, Gash DM, Bing G (2009) Striatal neuroinflammation promotes Parkinsonism in rats. PLoS One 4(5):e5482

    PubMed Central  PubMed  Google Scholar 

  154. Hara H, Kamiya T, Adachi T (2011) Endoplasmic reticulum stress inducers provide protection against 6-hydroxydopamine-induced cytotoxicity. Neurochem Int 58(1):35–43

    CAS  PubMed  Google Scholar 

  155. Rodriguez-Pallares J, Parga JA, Munoz A, Rey P, Guerra AJ, Labandeira-Garcia JL (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem 103(1):145–156. doi:10.1111/j.1471-4159.2007.04699.x

    CAS  PubMed  Google Scholar 

  156. Chen ZH, Yoshida Y, Saito Y, Niki E (2005) Adaptation to hydrogen peroxide enhances PC12 cell tolerance against oxidative damage. Neurosci Lett 383(3):256–259. doi:10.1016/j.neulet.2005.04.022

    CAS  PubMed  Google Scholar 

  157. Hamidi GA, Faraji A, Zarmehri HA, Haghdoost-Yazdi H (2012) Prolonged hyperoxia preconditioning attenuates behavioral symptoms of 6-hydroxydopamine-induced Parkinsonism. Neurol Res 34(7):636–642. doi:10.1179/1743132812y.0000000056

    CAS  PubMed  Google Scholar 

  158. Cannon JR, Keep RF, Hua Y, Richardson RJ, Schallert T, Xi GH (2005) Thrombin preconditioning provides protection in a 6-hydroxydopamine Parkinson’s disease model. Neurosci Lett 373(3):189–194. doi:10.1016/j.neulet.2004.10.089

    CAS  PubMed  Google Scholar 

  159. Vajda FJ (2002) Neuroprotection and neurodegenerative disease. J Clin Neurosci 9(1):4–8

    PubMed  Google Scholar 

  160. Seidl SE, Potashkin JA (2011) The promise of neuroprotective agents in Parkinson’s disease. Front Neurol 2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolhassan Ahmadiani.

Additional information

Mojtaba Golpich and Behrouz Rahmani as co-first authors, contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golpich, M., Rahmani, B., Mohamed Ibrahim, N. et al. Preconditioning as a Potential Strategy for the Prevention of Parkinson’s Disease. Mol Neurobiol 51, 313–330 (2015). https://doi.org/10.1007/s12035-014-8689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8689-6

Keywords

Navigation