Skip to main content

Advertisement

Log in

Targeting the mTOR Signaling Network for Alzheimer’s Disease Therapy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that can sense environmental stimuli such as growth factors, energy state, and nutrients. It is essential for cell growth, proliferation, and metabolism, but dysregulation of mTOR signaling pathway is also associated with a number of human diseases. Encouraging data from experiments have provided sufficient evidence for the relationship between the mTOR signaling pathway and Alzheimer’s disease (AD). Upregulation of mTOR signaling pathway is thought to play an important role in major pathological processes of AD. The mTOR inhibitors such as rapamycin have been proven to ameliorate the AD-like pathology and cognitive deficits effectively in a broad range of animal models. Application of mTOR inhibitors indicates the potential value of reducing mTOR activity as an innovative therapeutic strategy for AD. In this review, we will focus on the recent process in understanding mTOR signaling pathway and the vital involvement of this signaling pathway in the pathology of AD, and discuss the application of mTOR inhibitors as potential therapeutic agents for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K (2010) Mammalian target of rapamycin: hitting the bull’s-eye for neurological disorders. Oxidative Med Cell Longev 3(6):374–391

    Google Scholar 

  2. Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23(6):744–755. doi:10.1016/j.ceb.2011.09.003

    CAS  PubMed  Google Scholar 

  3. Meng XF, Yu JT, Song JH, Chi S, Tan L (2013) Role of the mTOR signaling pathway in epilepsy. J Neurol Sci. doi:10.1016/j.jns.2013.05.029

    PubMed  Google Scholar 

  4. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and tau: effects on cognitive impairments. J Biol Chem 285(17):13107–13120. doi:10.1074/jbc.M110.100420

    CAS  PubMed  Google Scholar 

  5. Caccamo A, Maldonado MA, Majumder S, Medina DX, Holbein W, Magri A, Oddo S (2011) Naturally secreted amyloid-beta increases mammalian target of rapamycin (mTOR) activity via a PRAS40-mediated mechanism. J Biol Chem 286(11):8924–8932. doi:10.1074/jbc.M110.180638

    CAS  PubMed  Google Scholar 

  6. Dennis MD, Kimball SR, Jefferson LS (2013) Mechanistic target of rapamycin complex 1 (mTORC1)-mediated phosphorylation is governed by competition between substrates for interaction with raptor. J Biol Chem 288(1):10–19. doi:10.1074/jbc.M112.402461

    CAS  PubMed  Google Scholar 

  7. Wiza C, Nascimento EB, Ouwens DM (2012) Role of PRAS40 in Akt and mTOR signaling in health and disease. Am J Physiol Endocrinol Metab 302(12):E1453–1460. doi:10.1152/ajpendo.00660.2011

    CAS  PubMed  Google Scholar 

  8. Wang H, Zhang Q, Wen Q, Zheng Y, Lazarovici P, Jiang H, Lin J, Zheng W (2012) Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway. Cell Signal 24(1):17–24. doi:10.1016/j.cellsig.2011.08.010

    CAS  PubMed  Google Scholar 

  9. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5):873–886. doi:10.1016/j.cell.2009.03.046

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol: CB 16(18):1865–1870. doi:10.1016/j.cub.2006.08.001

    CAS  PubMed  Google Scholar 

  11. Pearce LR, Sommer EM, Sakamoto K, Wullschleger S, Alessi DR (2011) Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J 436(1):169–179. doi:10.1042/BJ20102103

    CAS  PubMed  Google Scholar 

  12. Yadav RB, Burgos P, Parker AW, Iadevaia V, Proud CG, Allen RA, O’Connell JP, Jeshtadi A, Stubbs CD, Botchway SW (2013) mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging. BMC cell biology 14:3. doi:10.1186/1471-2121-14-3

  13. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi:10.1016/j.cell.2012.03.017

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Saji M, Ringel MD (2010) The PI3K–Akt–mTOR pathway in initiation and progression of thyroid tumors. Mol Cell Endocrinol 321(1):20–28. doi:10.1016/j.mce.2009.10.016

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316–323. doi:10.1038/ncb1547

    CAS  PubMed  Google Scholar 

  16. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328. doi:10.1016/j.tibs.2011.03.006

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    CAS  PubMed  Google Scholar 

  18. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226. doi:10.1016/j.molcel.2008.03.003

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18(23):2893–2904. doi:10.1101/gad.1256804

    CAS  PubMed  Google Scholar 

  20. Tan CY, Hagen T (2013) Post-translational regulation of mTOR complex 1 in hypoxia and reoxygenation. Cell Signal 25(5):1235–1244. doi:10.1016/j.cellsig.2013.02.012

    CAS  PubMed  Google Scholar 

  21. Valvezan AJ, Klein PS (2012) GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. Front Mol Neurosci. 5:1. doi:10.3389/fnmol.2012.00001

  22. Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14(3):133–139. doi:10.1038/nrm3522

    CAS  PubMed  Google Scholar 

  23. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. doi:10.1126/science.1157535

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334(6056):678–683. doi:10.1126/science.1207056

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303. doi:10.1016/j.cell.2010.02.024

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318. doi:10.1038/nrm2672

    PubMed  Google Scholar 

  27. Li L, Zhang X, Le W (2010) Autophagy dysfunction in Alzheimer’s disease. Neuro-Degener Dis 7(4):265–271. doi:10.1159/000276710

    Google Scholar 

  28. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20(7):1992–2003. doi:10.1091/mbc.E08-12-1249

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Oh WJ, Jacinto E (2011) mTOR complex 2 signaling and functions. Cell Cycle 10(14):2305–2316

    CAS  PubMed  Google Scholar 

  30. Boulbes DR, Shaiken T, dos Sarbassov D (2011) Endoplasmic reticulum is a main localization site of mTORC2. Biochem Biophys Res Commun 413(1):46–52. doi:10.1016/j.bbrc.2011.08.034

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Zinzalla V, Stracka D, Oppliger W, Hall MN (2011) Activation of mTORC2 by association with the ribosome. Cell 144(5):757–768. doi:10.1016/j.cell.2011.02.014

    CAS  PubMed  Google Scholar 

  32. Huang J, Dibble CC, Matsuzaki M, Manning BD (2008) The TSC1–TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 28(12):4104–4115. doi:10.1128/MCB.00289-08

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11(6):859–871. doi:10.1016/j.devcel.2006.10.007

    CAS  PubMed  Google Scholar 

  34. Lang F, Strutz-Seebohm N, Seebohm G, Lang UE (2010) Significance of SGK1 in the regulation of neuronal function. J Physiol 588(Pt 18):3349–3354. doi:10.1113/jphysiol.2010.190926

    CAS  PubMed  Google Scholar 

  35. Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME (2001) Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21(3):952–965. doi:10.1128/MCB.21.3.952-965.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Garcia-Martinez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416(3):375–385. doi:10.1042/BJ20081668

    CAS  PubMed  Google Scholar 

  37. Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL (2008) Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27(14):1919–1931. doi:10.1038/emboj.2008.119

    CAS  PubMed  Google Scholar 

  38. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11(1):35–46. doi:10.1016/j.cmet.2009.11.010

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751):1193–1196. doi:10.1126/science.1115535

    CAS  PubMed  Google Scholar 

  40. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395. doi:10.1038/nature08221

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol Series A, Biol Sci Med Sci 66(2):191–201. doi:10.1093/gerona/glq178

    Google Scholar 

  42. Passtoors WM, Beekman M, Deelen J, van der Breggen R, Maier AB, Guigas B, Derhovanessian E, van Heemst D, de Craen AJ, Gunn DA, Pawelec G, Slagboom PE (2013) Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell 12(1):24–31. doi:10.1111/acel.12015

    CAS  PubMed  Google Scholar 

  43. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, Kockel L (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11(6):453–465. doi:10.1016/j.cmet.2010.05.001

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, Benzer S, Kapahi P (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139(1):149–160. doi:10.1016/j.cell.2009.07.034

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Evans DS, Kapahi P, Hsueh WC, Kockel L (2011) TOR signaling never gets old: aging, longevity and TORC1 activity. Ageing Res Rev 10(2):225–237. doi:10.1016/j.arr.2010.04.001

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449(1):1–10. doi:10.1042/BJ20121098

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi:10.1038/nature08980

    CAS  PubMed  Google Scholar 

  48. van der Vos KE, Eliasson P, Proikas-Cezanne T, Vervoort SJ, van Boxtel R, Putker M, van Zutphen IJ, Mauthe M, Zellmer S, Pals C, Verhagen LP, Groot Koerkamp MJ, Braat AK, Dansen TB, Holstege FC, Gebhardt R, Burgering BM, Coffer PJ (2012) Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat Cell Biol 14(8):829–837. doi:10.1038/ncb2536

    PubMed  Google Scholar 

  49. Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I, Park Y, Hay N (2010) FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 18(4):592–604. doi:10.1016/j.devcel.2010.03.008

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493(7432):338–345. doi:10.1038/nature11861

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson IC, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326(5949):140–144. doi:10.1126/science.1177221

    CAS  PubMed  Google Scholar 

  52. Cornu M, Albert V, Hall MN (2013) mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23(1):53–62. doi:10.1016/j.gde.2012.12.005

    CAS  PubMed  Google Scholar 

  53. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695. doi:10.1016/j.cell.2011.07.030

    CAS  PubMed  Google Scholar 

  54. Signer RA, Morrison SJ (2013) Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12(2):152–165. doi:10.1016/j.stem.2013.01.001

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS (2009) mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5(3):279–289. doi:10.1016/j.stem.2009.06.017

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Yilmaz OH, Katajisto P, Lamming DW, Gultekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, Nielsen GP, Mino-Kenudson M, Zukerberg LR, Bhan AK, Deshpande V, Sabatini DM (2012) mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486(7404):490–495. doi:10.1038/nature11163

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M (2008) Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133(2):292–302. doi:10.1016/j.cell.2008.02.037

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15(5):713–724. doi:10.1016/j.cmet.2012.04.007

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335(6076):1638–1643. doi:10.1126/science.1215135

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Ma T, Klann E (2012) Amyloid beta: linking synaptic plasticity failure to memory disruption in Alzheimer’s disease. J Neurochem 120(Suppl 1):140–148. doi:10.1111/j.1471-4159.2011.07506.x

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Cavallucci V, D’Amelio M, Cecconi F (2012) Abeta toxicity in Alzheimer’s disease. Mol Neurobiol 45(2):366–378. doi:10.1007/s12035-012-8251-3

    CAS  PubMed  Google Scholar 

  62. Cai Z, Zhao B, Li K, Zhang L, Li C, Quazi SH, Tan Y (2012) Mammalian target of rapamycin: a valid therapeutic target through the autophagy pathway for Alzheimer’s disease? J Neurosci Res 90(6):1105–1118. doi:10.1002/jnr.23011

    CAS  PubMed  Google Scholar 

  63. Zhu XC, Yu JT, Jiang T, Tan L (2013) Autophagy modulation for Alzheimer’s disease therapy. Mol Neurobiol. doi:10.1007/s12035-013-8457-z

    Google Scholar 

  64. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171(1):87–98. doi:10.1083/jcb.200505082

    CAS  PubMed  Google Scholar 

  65. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122

    PubMed  Google Scholar 

  66. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci : Off J Soc Neurosci 28(27):6926–6937. doi:10.1523/JNEUROSCI.0800-08.2008

    CAS  Google Scholar 

  67. Wei L, Yang H, Xie Z, Yang S, Zhao C, Wang P, Xu S, Miao J, Zhao B, Bi J (2012) A butyrolactone derivative 3BDO alleviates memory deficits and reduces amyloid-beta deposition in an AbetaPP/PS1 transgenic mouse model. J Alzheimer’s Dis: JAD 30(3):531–543. doi:10.3233/JAD-2012-111985

    CAS  PubMed  Google Scholar 

  68. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120(Pt 23):4081–4091. doi:10.1242/jcs.019265

    CAS  PubMed  Google Scholar 

  69. Tian Y, Bustos V, Flajolet M, Greengard P (2011) A small-molecule enhancer of autophagy decreases levels of Abeta and APP-CTF via Atg5-dependent autophagy pathway. FASEB J: Off Publ Fed Am Soc Exp Biol 25(6):1934–1942. doi:10.1096/fj.10-175158

    CAS  Google Scholar 

  70. Steele JW, Lachenmayer ML, Ju S, Stock A, Liken J, Kim SH, Delgado LM, Alfaro IE, Bernales S, Verdile G, Bharadwaj P, Gupta V, Barr R, Friss A, Dolios G, Wang R, Ringe D, Fraser P, Westaway D, St George-Hyslop PH, Szabo P, Relkin NR, Buxbaum JD, Glabe CG, Protter AA, Martins RN, Ehrlich ME, Petsko GA, Yue Z, Gandy S (2012) Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer’s mouse model. Mol Psychiatry. doi:10.1038/mp.2012.106

    Google Scholar 

  71. Bharadwaj PR, Verdile G, Barr RK, Gupta V, Steele JW, Lachenmayer ML, Yue Z, Ehrlich ME, Petsko G, Ju S, Ringe D, Sankovich SE, Caine JM, Macreadie IG, Gandy S, Martins RN (2012) Latrepirdine (Dimebon) enhances autophagy and reduces intracellular GFP-Abeta42 levels in yeast. J Alzheimer’s Disease : JAD 32(4):949–967. doi:10.3233/JAD-2012-120178

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Steele JW, Gandy S (2013) Latrepirdine (Dimebon ((R)) ), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model. Autophagy 9(4):617–618. doi:10.4161/auto.23487

    CAS  PubMed  Google Scholar 

  73. Li L, Zhang S, Zhang X, Li T, Tang Y, Liu H, Yang W, Le W (2013) Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-beta pathology in a mouse model of Alzheimer’s disease. Curr Alzheimer Res 10(4):433–441

    CAS  PubMed  Google Scholar 

  74. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Investig 118(6):2190–2199. doi:10.1172/JCI33585

    CAS  PubMed  Google Scholar 

  75. Xue Z, Zhang S, Huang L, He Y, Fang R, Fang Y (2013) Upexpression of beclin-1-dependent autophagy protects against beta-amyloid-induced cell injury in PC12 cells. J Mol Neurosci: MN. doi:10.1007/s12031-013-9974-y

    Google Scholar 

  76. Tamboli IY, Hampel H, Tien NT, Tolksdorf K, Breiden B, Mathews PM, Saftig P, Sandhoff K, Walter J (2011) Sphingolipid storage affects autophagic metabolism of the amyloid precursor protein and promotes Abeta generation. J Neurosci: Off J Soc Neurosci 31(5):1837–1849. doi:10.1523/JNEUROSCI.2954-10.2011

    CAS  Google Scholar 

  77. Ohta K, Mizuno A, Ueda M, Li S, Suzuki Y, Hida Y, Hayakawa-Yano Y, Itoh M, Ohta E, Kobori M, Nakagawa T (2010) Autophagy impairment stimulates PS1 expression and gamma-secretase activity. Autophagy 6(3):345–352

    CAS  PubMed  Google Scholar 

  78. Ling D, Salvaterra PM (2011) Brain aging and Abeta(1)(−)(4)(2) neurotoxicity converge via deterioration in autophagy-lysosomal system: a conditional Drosophila model linking Alzheimer’s neurodegeneration with aging. Acta Neuropathol 121(2):183–191. doi:10.1007/s00401-010-0772-0

    PubMed  Google Scholar 

  79. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One 5(4):e9979. doi:10.1371/journal.pone.0009979

    PubMed Central  PubMed  Google Scholar 

  80. Vingtdeux V, Chandakkar P, Zhao H, d’Abramo C, Davies P, Marambaud P (2011) Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation. FASEB J: Off Publ Fed Am Soc Exp Biol 25(1):219–231. doi:10.1096/fj.10-167361

    CAS  Google Scholar 

  81. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J, Ferruzzi MG, Davies P, Marambaud P (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 285(12):9100–9113. doi:10.1074/jbc.M109.060061

    CAS  PubMed  Google Scholar 

  82. Oddo S (2012) The role of mTOR signaling in Alzheimer disease. Front Biosci (Schol Ed) 4:941–952

    Google Scholar 

  83. Ito S, Kimura K, Haneda M, Ishida Y, Sawada M, Isobe K (2007) Induction of matrix metalloproteinases (MMP3, MMP12 and MMP13) expression in the microglia by amyloid-beta stimulation via the PI3K/Akt pathway. Exp Gerontol 42(6):532–537. doi:10.1016/j.exger.2006.11.012

    CAS  PubMed  Google Scholar 

  84. Ito S, Sawada M, Haneda M, Ishida Y, Isobe K (2006) Amyloid-beta peptides induce several chemokine mRNA expressions in the primary microglia and Ra2 cell line via the PI3K/Akt and/or ERK pathway. Neurosci Res 56(3):294–299. doi:10.1016/j.neures.2006.07.009

    CAS  PubMed  Google Scholar 

  85. Bhaskar K, Miller M, Chludzinski A, Herrup K, Zagorski M, Lamb BT (2009) The PI3K–Akt–mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol Neurodegener 4:14. doi:10.1186/1750-1326-4-14

  86. Lafay-Chebassier C, Paccalin M, Page G, Barc-Pain S, Perault-Pochat MC, Gil R, Pradier L, Hugon J (2005) mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer’s disease. J Neurochem 94(1):215–225. doi:10.1111/j.1471-4159.2005.03187.x

    CAS  PubMed  Google Scholar 

  87. Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI (2012) Tau as a therapeutic target in neurodegenerative disease. Pharmacol Ther 136(1):8–22. doi:10.1016/j.pharmthera.2012.07.001

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118(1):53–69. doi:10.1007/s00401-009-0486-3

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, Palop JJ, Noebels JL, Mucke L (2011) Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci: Off J Soc Neurosci 31(2):700–711. doi:10.1523/JNEUROSCI.4152-10.2011

    CAS  Google Scholar 

  90. Wang J, Yu JT, Tan MS, Jiang T, Tan L (2013) Epigenetic mechanisms in Alzheimer’s disease: Implications for pathogenesis and therapy. Ageing Res Rev. doi:10.1016/j.arr.2013.05.003

    Google Scholar 

  91. Caccamo A, Magri A, Medina DX, Wisely EV, Lopez-Aranda MF, Silva AJ, Oddo S (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12:370–380 doi:10.1111/acel.12057

    Google Scholar 

  92. Lee MJ, Lee JH, Rubinsztein DC (2013) Tau degradation: the ubiquitin–proteasome system versus the autophagy–lysosome system. Prog Neurobiol 105:49–59. doi:10.1016/j.pneurobio.2013.03.001

    Google Scholar 

  93. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18(21):4153–4170. doi:10.1093/hmg/ddp367

    CAS  PubMed  Google Scholar 

  94. Zhang JY, Peng C, Shi H, Wang S, Wang Q, Wang JZ (2009) Inhibition of autophagy causes tau proteolysis by activating calpain in rat brain. J Alzheimer’s Dis: JAD 16(1):39–47. doi:10.3233/JAD-2009-0908

    PubMed  Google Scholar 

  95. Kruger U, Wang Y, Kumar S, Mandelkow EM (2012) Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 33(10):2291–2305. doi:10.1016/j.neurobiolaging.2011.11.009

    PubMed  Google Scholar 

  96. Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A, Perucho J, Cuervo AM, Garcia de Yebenes J, Mena MA (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 39(3):423–438. doi:10.1016/j.nbd.2010.05.014

    CAS  PubMed  Google Scholar 

  97. Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA, Yu WH, Duff KE (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8(4):609–622. doi:10.4161/auto.19048

    CAS  PubMed  Google Scholar 

  98. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O’Kane CJ, Rubinsztein DC (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15(3):433–442. doi:10.1093/hmg/ddi458

    CAS  PubMed  Google Scholar 

  99. Shemesh OA, Spira ME (2010) Hallmark cellular pathology of Alzheimer’s disease induced by mutant human tau expression in cultured Aplysia neurons. Acta Neuropathol 120(2):209–222. doi:10.1007/s00401-010-0689-7

    CAS  PubMed  Google Scholar 

  100. Tang Z, Bereczki E, Zhang H, Wang S, Li C, Ji X, Branca RM, Lehtio J, Guan Z, Filipcik P, Xu S, Winblad B, Pei JJ (2013) mTor mediates tau dyshomeostasis: implication for Alzheimer disease. J Biol Chem 288:15556–15570. doi:10.1074/jbc.M112.435123

    Google Scholar 

  101. Pei JJ, An WL, Zhou XW, Nishimura T, Norberg J, Benedikz E, Gotz J, Winblad B (2006) P70 S6 kinase mediates tau phosphorylation and synthesis. FEBS Lett 580(1):107–114. doi:10.1016/j.febslet.2005.11.059

    CAS  PubMed  Google Scholar 

  102. Pei JJ, Bjorkdahl C, Zhang H, Zhou X, Winblad B (2008) p70 S6 kinase and tau in Alzheimer’s disease. J Alzheimer’s Dis: JAD 14(4):385–392

    PubMed  Google Scholar 

  103. Morita T, Sobue K (2009) Specification of neuronal polarity regulated by local translation of CRMP2 and tau via the mTOR-p70S6K pathway. J Biol Chem 284(40):27734–27745. doi:10.1074/jbc.M109.008177

    CAS  PubMed  Google Scholar 

  104. Zhou XW, Tanila H, Pei JJ (2008) Parallel increase in p70 kinase activation and tau phosphorylation (S262) with Abeta overproduction. FEBS Lett 582(2):159–164. doi:10.1016/j.febslet.2007.11.078

    CAS  PubMed  Google Scholar 

  105. Hurtado DE, Molina-Porcel L, Carroll JC, Macdonald C, Aboagye AK, Trojanowski JQ, Lee VM (2012) Selectively silencing GSK-3 isoforms reduces plaques and tangles in mouse models of Alzheimer’s disease. J Neurosc: Off J Soc Neurosci 32(21):7392–7402. doi:10.1523/JNEUROSCI.0889-12.2012

    CAS  Google Scholar 

  106. Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F (2013) Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A. Ageing Res Rev 12(1):39–49. doi:10.1016/j.arr.2012.06.008

    CAS  PubMed  Google Scholar 

  107. Meske V, Albert F, Ohm TG (2008) Coupling of mammalian target of rapamycin with phosphoinositide 3-kinase signaling pathway regulates protein phosphatase 2A- and glycogen synthase kinase-3 -dependent phosphorylation of tau. J Biol Chem 283(1):100–109. doi:10.1074/jbc.M704292200

    CAS  PubMed  Google Scholar 

  108. Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J, Williamson R, Fuchs M, Kohler A, Glossmann H, Schneider R, Sutherland C, Schweiger S (2010) Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci U S A 107(50):21830–21835. doi:10.1073/pnas.0912793107

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Yao XQ, Zhang XX, Yin YY, Liu B, Luo DJ, Liu D, Chen NN, Ni ZF, Wang X, Wang Q, Wang JZ, Liu GP (2011) Glycogen synthase kinase-3beta regulates Tyr307 phosphorylation of protein phosphatase-2A via protein tyrosine phosphatase 1B but not Src. Biochem J 437(2):335–344. doi:10.1042/BJ20110347

    CAS  PubMed  Google Scholar 

  110. Lee HG, Casadesus G, Zhu X, Castellani RJ, McShea A, Perry G, Petersen RB, Bajic V, Smith MA (2009) Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer’s disease. Neurochem Int 54(2):84–88. doi:10.1016/j.neuint.2008.10.013

    CAS  PubMed Central  PubMed  Google Scholar 

  111. McShea A, Lee HG, Petersen RB, Casadesus G, Vincent I, Linford NJ, Funk JO, Shapiro RA, Smith MA (2007) Neuronal cell cycle re-entry mediates Alzheimer disease-type changes. Biochim Biophys Acta 1772(4):467–472. doi:10.1016/j.bbadis.2006.09.010

    CAS  PubMed  Google Scholar 

  112. Park KH, Hallows JL, Chakrabarty P, Davies P, Vincent I (2007) Conditional neuronal simian virus 40 T antigen expression induces Alzheimer-like tau and amyloid pathology in mice. J Neurosci: Off J Soc Neurosc 27(11):2969–2978. doi:10.1523/JNEUROSCI.0186-07.2007

    CAS  Google Scholar 

  113. Khurana V, Lu Y, Steinhilb ML, Oldham S, Shulman JM, Feany MB (2006) TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr Biol: CB 16(3):230–241. doi:10.1016/j.cub.2005.12.042

    CAS  PubMed  Google Scholar 

  114. Avila J, de Barreda EG, Pallas-Bazarra N, Hernandez F (2013) Tau and neuron aging. Aging Dis 4(1):23–28

    PubMed Central  PubMed  Google Scholar 

  115. Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33(2):67–75. doi:10.1016/j.tins.2009.11.003

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Stoica L, Zhu PJ, Huang W, Zhou H, Kozma SC, Costa-Mattioli M (2011) Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage. Proc Natl Acad Sci U S A 108(9):3791–3796. doi:10.1073/pnas.1014715108

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Ma T, Hoeffer CA, Capetillo-Zarate E, Yu F, Wong H, Lin MT, Tampellini D, Klann E, Blitzer RD, Gouras GK (2010) Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease. PloS One 5(9):e12845. doi:10.1371/journal.pone.0012845

  118. Gobert D, Topolnik L, Azzi M, Huang L, Badeaux F, Desgroseillers L, Sossin WS, Lacaille JC (2008) Forskolin induction of late-LTP and up-regulation of 5' TOP mRNAs translation via mTOR, ERK, and PI3K in hippocampal pyramidal cells. J Neurochem 106(3):1160–1174. doi:10.1111/j.1471-4159.2008.05470.x

    CAS  PubMed  Google Scholar 

  119. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964. doi:10.1126/science.1190287

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Duman RS, Li N, Liu RJ, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62(1):35–41. doi:10.1016/j.neuropharm.2011.08.044

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM (2002) A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A 99(1):467–472. doi:10.1073/pnas.012605299

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Antion MD, Hou L, Wong H, Hoeffer CA, Klann E (2008) mGluR-dependent long-term depression is associated with increased phosphorylation of S6 and synthesis of elongation factor 1A but remains expressed in S6K-deficient mice. Mol Cell Biol 28(9):2996–3007. doi:10.1128/MCB.00201-08

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Bateup HS, Takasaki KT, Saulnier JL, Denefrio CL, Sabatini BL (2011) Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function. J Neurosc: Off J Soc Neurosci 31(24):8862–8869. doi:10.1523/JNEUROSCI.1617-11.2011

    CAS  Google Scholar 

  124. Parsons RG, Gafford GM, Helmstetter FJ (2006) Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J Neurosci: Off J Soc Neurosci 26(50):12977–12983. doi:10.1523/JNEUROSCI.4209-06.2006

    CAS  Google Scholar 

  125. Puighermanal E, Marsicano G, Busquets-Garcia A, Lutz B, Maldonado R, Ozaita A (2009) Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci 12(9):1152–1158. doi:10.1038/nn.2369

    CAS  PubMed  Google Scholar 

  126. Radwanska K, Medvedev NI, Pereira GS, Engmann O, Thiede N, Moraes MF, Villers A, Irvine EE, Maunganidze NS, Pyza EM, Ris L, Szymanska M, Lipinski M, Kaczmarek L, Stewart MG, Giese KP (2011) Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci U S A 108(45):18471–18475. doi:10.1073/pnas.1109680108

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Fortress AM, Fan L, Orr PT, Zhao Z, Frick KM (2013) Estradiol-induced object recognition memory consolidation is dependent on activation of mTOR signaling in the dorsal hippocampus. Learn Mem 20(3):147–155. doi:10.1101/lm.026732.112

    CAS  PubMed  Google Scholar 

  128. Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, Galiano M, Krnjevic K, Roman G, Costa-Mattioli M (2013) mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci 16(4):441–448. doi:10.1038/nn.3351

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Garelick MG, Kennedy BK (2011) TOR on the brain. Exp Gerontol 46(2–3):155–163. doi:10.1016/j.exger.2010.08.030

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14(8):843–848. doi:10.1038/nm1788

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Ehninger D, de Vries PJ, Silva AJ (2009) From mTOR to cognition: molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis. J Intellect Dis Res: JIDR 53(10):838–851. doi:10.1111/j.1365-2788.2009.01208.x

    CAS  Google Scholar 

  132. Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12(8):437–452. doi:10.1038/nrn3068

    CAS  PubMed  Google Scholar 

  133. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168. doi:10.1016/j.molcel.2006.03.029

    CAS  PubMed  Google Scholar 

  134. Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N (2010) Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta 1804(3):433–439. doi:10.1016/j.bbapap.2009.12.001

    CAS  PubMed  Google Scholar 

  135. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66(3):1500–1508. doi:10.1158/0008-5472.CAN-05-2925

    PubMed Central  PubMed  Google Scholar 

  136. Ducker GS, Atreya CE, Simko JP, Hom YK, Matli MR, Benes CH, Hann B, Nakakura EK, Bergsland EK, Donner DB, Settleman J, Shokat KM, Warren RS (2013) Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors. Oncogene. doi:10.1038/onc.2013.92

  137. Li J, Liu J, Song J, Wang X, Weiss HL, Townsend CM Jr, Gao T, Evers BM (2011) mTORC1 inhibition increases neurotensin secretion and gene expression through activation of the MEK/ERK/c-Jun pathway in the human endocrine cell line BON. Am J Physiol Cell Physiol 301(1):C213–226. doi:10.1152/ajpcell.00067.2011

    CAS  PubMed  Google Scholar 

  138. Zaytseva YY, Valentino JD, Gulhati P, Evers BM (2012) mTOR inhibitors in cancer therapy. Cancer Lett 319(1):1–7. doi:10.1016/j.canlet.2012.01.005

    CAS  PubMed  Google Scholar 

  139. Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10(11):868–880. doi:10.1038/nrd3531

    CAS  PubMed  Google Scholar 

  140. Roper J, Richardson MP, Wang WV, Richard LG, Chen W, Coffee EM, Sinnamon MJ, Lee L, Chen PC, Bronson RT, Martin ES, Hung KE (2011) The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer. PLoS One 6(9):e25132. doi:10.1371/journal.pone.0025132

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284(12):8023–8032. doi:10.1074/jbc.M900301200

    CAS  PubMed  Google Scholar 

  142. Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Investig 123(3):980–989. doi:10.1172/JCI64099

    CAS  PubMed  Google Scholar 

  143. Pierce A, Podlutskaya N, Halloran JJ, Hussong SA, Lin PY, Burbank R, Hart MJ, Galvan V (2013) Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer’s-like deficits in mice modeling the disease. J Neurochem 124(6):880–893. doi:10.1111/jnc.12080

    CAS  PubMed  Google Scholar 

  144. Majumder S, Caccamo A, Medina DX, Benavides AD, Javors MA, Kraig E, Strong R, Richardson A, Oddo S (2012) Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1beta and enhancing NMDA signaling. Aging Cell 11(2):326–335. doi:10.1111/j.1474-9726.2011.00791.x

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Liu Y, Su Y, Wang J, Sun S, Wang T, Qiao X, Run X, Li H, Liang Z (2013) Rapamycin decreases tau phosphorylation at Ser214 through regulation of cAMP-dependent kinase. Neurochem Int 62(4):458–467. doi:10.1016/j.neuint.2013.01.014

    CAS  PubMed  Google Scholar 

  146. Majumder S, Richardson A, Strong R, Oddo S (2011) Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One 6(9):e25416. doi:10.1371/journal.pone.0025416

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Raman L, Kong X, Kernie SG (2013) Pharmacological inhibition of the mTOR pathway impairs hippocampal development in mice. Neurosci Lett 541:9–14. doi:10.1016/j.neulet.2013.01.045

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Natural Science Foundation of China (81000544 and 81171209), the Shandong Provincial Natural Science Foundation, China (ZR2010HQ004 and ZR2011HZ001), and the Shandong Provincial Outstanding Medical Academic Professional Program.

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Tai Yu or Lan Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Yu, JT., Miao, D. et al. Targeting the mTOR Signaling Network for Alzheimer’s Disease Therapy. Mol Neurobiol 49, 120–135 (2014). https://doi.org/10.1007/s12035-013-8505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8505-8

Keywords

Navigation