Skip to main content

Advertisement

Log in

Deregulation of BRCA1 Leads to Impaired Spatiotemporal Dynamics of γ-H2AX and DNA Damage Responses in Huntington’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder of mid-life onset characterized by involuntary movements and progressive cognitive decline caused by a CAG repeat expansion in exon 1 of the Huntingtin (Htt) gene. Neuronal DNA damage is one of the major features of neurodegeneration in HD, but it is not known how it arises or relates to the triplet repeat expansion mutation in the Htt gene. Herein, we found that imbalanced levels of non-phosphorylated and phosphorylated BRCA1 contribute to the DNA damage response in HD. Notably, nuclear foci of γ-H2AX, the molecular component that recruits various DNA damage repair factors to damage sites including BRCA1, were deregulated when DNA was damaged in HD cell lines. BRCA1 specifically interacted with γ-H2AX via the BRCT domain, and this association was reduced in HD. BRCA1 overexpression restored γ-H2AX level in the nucleus of HD cells, while BRCA1 knockdown reduced the spatiotemporal propagation of γ-H2AX foci to the nucleoplasm. The deregulation of BRCA1 correlated with an abnormal nuclear distribution of γ-H2AX in striatal neurons of HD transgenic (R6/2) mice and BRCA1+/− mice. Our data indicate that BRCA1 is required for the efficient focal recruitment of γ-H2AX to the sites of neuronal DNA damage. Taken together, our results show that BRCA1 directly modulates the spatiotemporal dynamics of γ-H2AX upon genotoxic stress and serves as a molecular maker for neuronal DNA damage response in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coppedè F, Migliore L (2010) DNA repair in premature aging disorders and neurodegeneration. Curr Aging Sci 3:3–19

    Article  PubMed  Google Scholar 

  2. Kovtun IV, Liu Y, Bjoras M, Klungland A, Wilson SH, McMurray CT (2007) OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447:447–452

    Article  PubMed  CAS  Google Scholar 

  3. Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM (1997) Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90:425–435

    Article  PubMed  CAS  Google Scholar 

  4. Deng CX, Wang RH (2003) Roles of BRCA1 in DNA damage repair: a link between development and cancer. Hum Mol Genet 12(suppl 1):R113–R123

    Article  PubMed  CAS  Google Scholar 

  5. Ljungman M, Lane DP (2004) Transcription—guarding the genome by sensing DNA damage. Nat Rev Cancer 4:727–737

    Article  PubMed  CAS  Google Scholar 

  6. Starita LM, Parvin JD (2003) The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr Opin Cell Biol 15:345–350

    Article  PubMed  CAS  Google Scholar 

  7. Venkitaraman AR (2001) Functions of BRCA1 and BRCA2 in the biological response to DNA damage. J Cell Sci 114:3591–3598

    PubMed  CAS  Google Scholar 

  8. Chen Y, Farmer AA, Chen CF, Jones DC, Chen PL, Lee WH (1996) BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res 56:4074

    CAS  Google Scholar 

  9. Ruffner H, Verma IM (1997) BRCA1 is a cell cycle-regulated nuclear phosphoprotein. Proc Natl Acad Sci USA 94:7138–7143

    Article  PubMed  CAS  Google Scholar 

  10. Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286:1162–1166

    Article  PubMed  CAS  Google Scholar 

  11. Lee JS, Collins KM, Brown AL, Lee CH, Chung JH (2000) hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404:201–204

    Article  PubMed  CAS  Google Scholar 

  12. Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M, Livingston DM (1999) Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell 4:1093–1099

    Article  PubMed  CAS  Google Scholar 

  13. Bachelier R, Xu X, Wang X, Li W, Naramura M, Gu H, Deng CX (2003) Normal lymphocyte development and thymic lymphoma formation in Brca1 exon-11-deficient mice. Oncogene 22:528–537

    Article  PubMed  CAS  Google Scholar 

  14. Cao L, Li W, Kim S, Brodie SG, Deng CX (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 17:201–213

    Article  PubMed  CAS  Google Scholar 

  15. Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH (1996) Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet 12:191–194

    Article  PubMed  CAS  Google Scholar 

  16. Hakem R, de la Pompa JL, Sirard C, Mo R, Woo M, Hakem A, Wakeham A, Potter J, Reitmair A, Bilia F et al (1996) The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85:1009–1023

    Article  PubMed  CAS  Google Scholar 

  17. Hohenstein P, Kielman MF, Breukel C, Bennett LM, Wiseman R, Krimpenfort P, Cornelisse C, van Ommen GJ, Devilee P, Fodde R (2001) A targeted mouse Brca1 mutation removing the last BRCT repeat results in apoptosis and embryonic lethality at the headfold stage. Oncogene 20:2544–2550

    Article  PubMed  CAS  Google Scholar 

  18. Liu CY, Flesken-Nikitin A, Li S, Zeng Y, Lee WH (1996) Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev 10:1835–1843

    Article  PubMed  CAS  Google Scholar 

  19. Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A (1997) Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 11:1226–1241

    Article  PubMed  CAS  Google Scholar 

  20. Ludwig T, Fisher P, Ganesan S, Efstratiadis A (2001) Tumorigenesis in mice carrying a truncating Brca1 mutation. Genes Dev 15:1188–1893

    Article  PubMed  CAS  Google Scholar 

  21. Shen SX, Weaver Z, Xu X, Li C, Weinstein M, Chen L, Guan XY, Ried T, Deng CX (1998) A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17:3115–3124

    Article  PubMed  CAS  Google Scholar 

  22. Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T, Deng CX (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3:389–395

    Article  PubMed  CAS  Google Scholar 

  23. Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T, Hennighausen L, Wynshaw-Boris A, Deng CX (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22:37–43

    Article  PubMed  CAS  Google Scholar 

  24. Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA, Harris CC, Deng CX (2001) Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 28:266–271

    Article  PubMed  CAS  Google Scholar 

  25. Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12:162–169

    Article  PubMed  CAS  Google Scholar 

  26. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  PubMed  CAS  Google Scholar 

  27. Celeste A, PetersenS RPJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    Article  PubMed  CAS  Google Scholar 

  28. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2008) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 133:549

    Article  CAS  Google Scholar 

  29. Tauchi H, Kobayashi J, Morishima K, van Gent DC, Shiraishi T, Verkaik NS, van Heems D, Ito E, Nakamura A, Sonoda E et al (2002) Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature 420:93–98

    Article  PubMed  CAS  Google Scholar 

  30. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW et al (1996) Exon1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  PubMed  CAS  Google Scholar 

  31. Giuliano P, De Cristofaro T, Affaitati A, Pizzulo GM, Feliciello A, Crscuolo C, De Michele G, Filla A, Awedimento EV, Varrone S (2003) DNA damage induced by polyglutamine-expanded proteins. Hum Mol Genet 12:2301–2309

    Article  PubMed  CAS  Google Scholar 

  32. Illuzzi J, Yerkes S, Parekh-Olmedo H, Kmiec EB (2009) DNA breakage and induction of DNA damage response proteins precede the appearance of visible mutant huntingtin aggregates. J Neurosci Res 87:733–747

    Article  PubMed  CAS  Google Scholar 

  33. Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B, Khanna KK (2000) Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res 60:3299–3304

    PubMed  CAS  Google Scholar 

  34. Gatei M, Zhou BB, Hobson K, Scott S, Young D, Khanna KK (2001) Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J Biol Chem 276:17276–17280

    Article  PubMed  CAS  Google Scholar 

  35. Foray N, Marot D, Gabriel A, Randrianarison V, Carr AM, Perricaudet M, Ashworth A, Jeggo P (2003) A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J 22:2860–2871

    Article  PubMed  CAS  Google Scholar 

  36. Ouchi M, Fujiuchi N, Sasai K, Katayama H, Minamishima YA, Ongusaha PP, Deng C, Sen S, Lee SW, Ouchi T (2004) BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem 279:19643–19648

    Article  PubMed  CAS  Google Scholar 

  37. Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC, Sharp AH, Persichetti F, Cattaneo E, MacDonald ME (2000) Dominant phenotypes produced by the HD mutation in STHdh (Q111) striatal cells. Hum Mol Genet 9:2799–2809

    Article  PubMed  CAS  Google Scholar 

  38. Ryu H, Lee J, Zaman K, Kubilis J, Ferrante RJ, Ross BD, Neve R, Ratan RR (2003) Sp1 and Sp3 are oxidative stress-inducible, anti-death transcription factors in cortical neurons. J Neurosci 23:3597–3606

    PubMed  CAS  Google Scholar 

  39. Ryu H, Lee J, Hagerty SW, Soh BY, MacAlpin SE, Cormier KA, Smith KM, Ferrante RJ (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc Natl Acad Sci USA 103:19176–19181

    Article  PubMed  CAS  Google Scholar 

  40. Ryu H, Jeon GS, Cashman NR, Kowall NW, Lee J (2011) Differential expression of c-Ret in motor neurons versus non-neuronal cells is linked to the pathogenesis of ALS. Lab Invest 91:342–352

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Marcy MacDonald (Harvard Medical School) for STHdh Q7/7 and STHdh Q111/111 cells. This study was supported by WCU Neurocytomics Program Grant (800–20080848) (H.R.) and SRC Grant (2010-0029-403) (H.R.) from KOSEF, NIH NS 067283-01A1 (H.R.), and R01CA79892 (TO), R01CA90631 (TO), and Susan G. Komen Breast Cancer Research Award (TO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Ryu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, G.S., Kim, K.Y., Hwang, Y.J. et al. Deregulation of BRCA1 Leads to Impaired Spatiotemporal Dynamics of γ-H2AX and DNA Damage Responses in Huntington’s Disease. Mol Neurobiol 45, 550–563 (2012). https://doi.org/10.1007/s12035-012-8274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8274-9

Keywords

Navigation