Skip to main content

Advertisement

Log in

Impact of an anionic surfactant on the enhancement of the capacitance characteristics of polyaniline-wrapped graphene oxide hybrid composite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The impact of anionic surfactant sodiumlaurylsulphate (SLS) on the enhancement of the electrochemical (EC) performance of polyaniline-wrapped reduced graphene oxide (rGO) hybrid composites (SPGO) for EC energy storage applications with excellent cycle stability was explored in this study. The title composite was prepared by the oxidative polymerization of aniline on surfactant-intercalated graphene oxide at subzero temperature. Field-emission scanning electron microscope (FE-SEM) micrographs reveal the morphological modifications due to the surfactant activity on PGO. Fourier transform infrared, Raman and X-ray diffraction spectra results confirmed the formation of the SPGO hybrid composite. A prototype symmetric supercapacitor (SC) was fabricated with the SPGO hybrid composite as working electrodes in 1 M H2SO4 electrolyte. SC was tested for its EC performance using a two-electrode system. The SLS addition was found to have a proficient influence on the EC performance of SPGO hybrid composite ascribed to the synergism between SLS, PANI and rGO with their respective pseudocapacitive and double-layer mechanisms. SPGO symmetric SC was also found to achieve maximum specific capacitance as high as 531 F g–1 at 0.2 A g–1, with better specific energy of 26.6 Wh kg–1 at 188.8 W kg–1 specific power and 98% columbic efficiency over 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Muralee Gopi C V V, Vinodh R, Sambasivam S, Obaidat I M and Kim H J 2020 J. Energy Storage 27 101035

    Article  Google Scholar 

  2. Miller E E, Hua Y and Tezel F H 2018 J. Energy Storage 20 30

    Article  Google Scholar 

  3. Misnon I I, Zain N K M and Jose R 2019 Waste Biomass Valori. 6 10

    Google Scholar 

  4. Deshmukh P R, Patil S V, Bulakhe R N, Pusawale S N, Shim J J and Lokhande C D 2015 RSC Adv. 5 84

    Google Scholar 

  5. Kausar A 2017 J. Macromol. 9 54

    Google Scholar 

  6. Athira A R, Vimuna V M, Vidya K and Xavier T S 2018 2nd International conference on condensed matter and applied physics, AIP conference proceedings 1953

  7. Ćirić-Marjanović G 2013 Synth Met. 177 1

    Article  CAS  Google Scholar 

  8. Wang Z, Zhang Q, Long S, Luo Y, Yu P, Tan Z et al 2018 ACS Appl. Mater. Interfaces 10 12

    Google Scholar 

  9. Oo T Z, Min W N, Wint T H M, Koledov V and von Gratowski S 2020 J. Phys. Conf. 1461 12124

    Article  CAS  Google Scholar 

  10. Kulkarni S B, Patil U M, Shackery I, Sohn J S, Lee S, Park B et al 2014 J. Mater. Chem. A 2 14

    Google Scholar 

  11. Huang Y, Zhou J, Gao N, Yin Z, Zhou H, Yang X et al 2018 Electrochim. Acta 269 649

    Article  CAS  Google Scholar 

  12. Zhu G, Wen H, Ma M, Wang W, Yang L, Wang L et al 2018 Chem. Comm. 54 74

    Article  Google Scholar 

  13. Horn M R, Williams F, Dubal D, MacLeod J and Motta N 2020 ChemSusChem. 13 6

    Article  CAS  Google Scholar 

  14. Wang Z, Gao H, Zhang Q, Liu Y, Chen J and Guo Z 2019 Small 15 3

    Google Scholar 

  15. Li Z J, Young R, Backes C, Zhao W, Zhang X, Zhukov A et al 2020 ACS Nano 14 10976

    Article  CAS  Google Scholar 

  16. Ntakirutimana S, Tan W and Wang Y 2019 RSC Adv. 9 45

    Article  Google Scholar 

  17. Palsaniya S, Nemade H B and Dasmahapatra A K 2019 ACS Appl. Polym. Mater. 1 4

    Article  CAS  Google Scholar 

  18. Kim B J, Oh S G, Han M G and Im S S 2000 Langmuir 16 14

    Google Scholar 

  19. Prinith N S and Manjunatha J G 2019 Mater. Sci. Technol. 2 3

    Google Scholar 

  20. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 6

    Article  Google Scholar 

  21. Kim J, Cote L J, Kim F, Yuan W, Shull K R and Huang J 2010 J. Am. Chem. Soc. 132 23

    Google Scholar 

  22. Xu Y, Cao H, Xue Y, Li B and Cai W 2018 Nanomaterials 8 11

    CAS  Google Scholar 

  23. Xu L Q, Liu Y L, Neoh K, Kang E and Fu G D 2011 Macromol. Rapid. Commun. 32 8

    Article  CAS  Google Scholar 

  24. Kumar N A, Choi H J, Shin Y R, Chang D W, Dai L and Baek J B 2012 ACS Nano 6 2

    Google Scholar 

  25. Do Nascimento G M 2010 Ashok Kumar (ed) Nanofibers (UK: IntechOpen Croatia) p 438

  26. Jain D, Hashmi S A and Kaur A 2016 Electrochim. Acta 222 222

    Article  CAS  Google Scholar 

  27. Saadati F, Ghahramani F, Shayani-Jam H, Piri F and Yaftian M R 2018 J. Taiwan Inst. Chem. Eng. 86 213

    Article  CAS  Google Scholar 

  28. Hayatgheib Y, Ramezanzadeh B, Kardar P and Mahdavian M 2018 Corros Sci. 133 358

    Article  CAS  Google Scholar 

  29. Kondawar S B, Deshpande M D and Agrawal S P 2012 J. Compos. Mater. 2 3

    Google Scholar 

  30. Rajagopalan B, Hur S H and Chung J S 2015 Nanoscale Res. Lett. 10 1

    Article  CAS  Google Scholar 

  31. Wang Y, Xiong S, Wang X, Chu J, Zhang R, Gong M et al 2020 Polym. J. 52 7

    Google Scholar 

  32. Rose A, Guru Prasad K, Sakthivel T, Gunasekaran V, Maiyalagan T and Vijayakumar T 2018 Appl. Surf. Sci. 449 551

  33. Chakraborty I, Chakrabarty N, Senapati A and Chakraborty A K 2018 J. Phys. Chem. C 122 48

    Google Scholar 

  34. Simotwo S K, Delre C and Kalra V 2016 ACS Appl. Mater. Interfaces 8 33

    Article  CAS  Google Scholar 

  35. Liu B, Kong D, Zhang J, Wang Y, Chen T, Cheng C et al 2016 J. Mater. Chem. A 4 9

    Google Scholar 

  36. Sekar P, Anothumakkool B, Vijayakumar V, Lohgaonkar A and Kurungot S 2016 ChemElectroChem. 3 6

    Article  CAS  Google Scholar 

  37. Ravi B, Rajender B and Palaniappan S 2016 Int. J. Polym. Mater. 65 16

    Article  CAS  Google Scholar 

  38. Cong H P, Ren X C, Wang P and Yu S H 2013 Energy Environ. Sci. 6 4

    Article  CAS  Google Scholar 

  39. Wu J, Zhou W, Jiang F, Chang Y, Zhou Q, Li D et al 2018 ACS Appl. Energy Mater. 1 9

  40. Mondal S, Rana U and Malik S 2017 J. Phys. Chem. C 121 14

    Google Scholar 

  41. Tan Y, Liu Y, Zhang Y, Xu C, Kong L, Kang L et al 2018 J. Appl. Polym. Sci. 135 5

    Google Scholar 

  42. Zhao Z, Liu Z, Zhong Q, Qin Y, Xu A, Li W et al 2020 ACS Appl. Energy Mater. 3 9

    Article  CAS  Google Scholar 

  43. Li Y, Yan Q, Wang Y, Li Y, Zhu M, Cheng K et al 2019 Appl. Surf. Sci. 493 506

  44. Gholami Laelabadi K, Moradian R and Manouchehri I 2020 ACS Appl. Energy Mater. 3 6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to DST-FIST, State Centre for Advanced Instrumentation, Government College for Women and the Department of Optoelectronics, for analysis support. A R Athira acknowledges the financial assistance from the University of Kerala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T S Xavier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, A.R., Deepthi, S. & Xavier, T.S. Impact of an anionic surfactant on the enhancement of the capacitance characteristics of polyaniline-wrapped graphene oxide hybrid composite. Bull Mater Sci 44, 178 (2021). https://doi.org/10.1007/s12034-021-02481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02481-8

Keywords

Navigation