Skip to main content

Advertisement

Log in

Synthesis and characterization of inherently radiopaque nanocomposites using biocompatible iodinated poly(methyl methacrylate-co-acrylamide) and graphene oxide

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

New inherently radiopaque nanocomposites were prepared using iodine-containing poly(methyl methacrylate-co-acrylamide) and graphene oxide. For this purpose, P(MMA-co-AA) was synthesized via copolymerization of methyl methacrylate and acrylic acid, and modified with 4-iodophenyl isocyanate and 3,4,5-triiodophenyl isocyanate to form poly[(methyl methacrylate-co-(N-4-iodophenyl)acrylamide)] (1I-P(MMA-co-AA)) and poly[(methyl methacrylate-co-(N-3,4,5-triiodophenyl)acrylamide)] (3I-P(MMA-co-AA)), respectively. For comparative evaluation, the non-iodinated copolymer (PIC-P(MMA-co-AA)) was prepared via reaction of the P(MMA-co-AA) with phenyl isocyanate to investigate the effect of iodinated substituents on the morphology and thermal characteristics of the nanocomposites. All the nanocomposites were characterized by X-ray diffraction analysis, scanning electron microscopy, X-radiography and thermogravimetric analysis. The results proved that thermal properties of the nanocomposites improved by the introduction of different amounts of graphene oxide into the copolymers’ matrix. Radiopacity measurements showed the excellent radiopacity of iodinated nanocomposites and proved that 3I-GO-5 had radiopacity equivalent to that of an aluminium wedge with 2-mm thickness.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wallyn J, Anton N, Serra C A, Bouquey M, Collot M, Anton H et al 2018 Acta Biomater.66 200

    CAS  Google Scholar 

  2. Kulcsár Z, Karol A, Kronen P W, Svende P, Klein K, Jordan O et al 2017 Eur. Radiol.27 1248

    Google Scholar 

  3. Ashrafi K, Tang Y, Britton H, Domenge O, Blino D, Bushby A J et al 2017 J. Control Release250 36

    CAS  Google Scholar 

  4. Ma Q, Lei K, Ding J, Yu L and Ding J 2017 Polym. Chem.8 6665

    CAS  Google Scholar 

  5. Houston K R, Brosnan S M, Burk L M, Lee Y Z, Luft J C and Ashby V S 2017 J. Polym. Sci. Polym. Chem.55 2171

    CAS  Google Scholar 

  6. Sang L, Luo D, Wei Z and Qi M 2017 Mater. Sci. Eng. C75 1389

    CAS  Google Scholar 

  7. Guo X, Johnson D P and Stehr R E 2017 US 0321054 A1

    Google Scholar 

  8. James N R and Jayakrishnan A 2007 Biomaterials28 3182

    CAS  Google Scholar 

  9. Dawlee S, Jayakrishnan A and Jayabalan M 2009 J. Mater. Sci. Mater. Med.20 243

    Google Scholar 

  10. Gomoll A H, Bellare A, Fitz W, Thornhill T S, Scott R D, Jemian P R et al 1999 Mater. Res. Soc. Symp. Proc.581 399

    Google Scholar 

  11. Romero-Ibarra I, Bonilla-Blancas E, Sanchez-Solis A and Manero O 2012 Eur. Polym. J.48 670

    CAS  Google Scholar 

  12. Ely T O, Sharma M, Lesniak W, Klippenstein D L, Foster B A and Balogh L P 2007 Mater. Res. Soc. Symp. Proc.1064 6

    Google Scholar 

  13. Chan D, Titus H, Chung K H, Dixon H, Wellinghoff S and Rawls H 1999 Dent. Mater.15 219

    CAS  Google Scholar 

  14. Nicholson J, Hawkins S and Smith J 1993 J. Mater. Sci. Mater. Med.4 418

    CAS  Google Scholar 

  15. Shiekh R A, Ab Rahman I and Luddin N 2014 Ceram. Int.40 3165

    Google Scholar 

  16. Yeum J H, Sun Q and Deng Y 2005 Macromol. Mater. Eng.290 78

    CAS  Google Scholar 

  17. Cha J W, Lyoo W S, Oh T H, Han S S and Lee H G 2014 Fiber. Polym.15 472

    CAS  Google Scholar 

  18. Schulz H, Pratsinis S E, Rüegger H, Zimmermann J, Klapdohr S and Salz U 2008 Colloid Surf. Physicochem. Eng. Asp.315 79

    CAS  Google Scholar 

  19. Schulz H, Mädler L, Pratsinis S E, Burtscher P and Moszner N 2005 Adv. Funct. Mater.15 830

    CAS  Google Scholar 

  20. Mädler L, Krumeich F, Burtscher P and Moszner N 2006 J. Nanopart. Res.8 323

    Google Scholar 

  21. Khaled S, Charpentier P A and Rizkalla A S 2010 Acta Biomater.6 3178

    CAS  Google Scholar 

  22. Hasan S M, Harmon G, Zhou F, Raymond J E, Gustafson T P, Wilson T S et al 2016 Polym. Adv. Tech.27 195

    CAS  Google Scholar 

  23. Ginebra M, Albuixech L, Fernandez-Barragan E, Aparicio C, Gil F, San Roman J et al 2002 Biomaterials23 1873

    CAS  Google Scholar 

  24. Deb S, Abdulghani S and Behiri J 2002 Biomaterials23 3387

    CAS  Google Scholar 

  25. Cabasso I, Smid J and Sahni S K 1989 J. Appl. Polym. Sci.38 1653

    CAS  Google Scholar 

  26. Ghosh P, Das M, Rameshbabu A P, Das D, Datta S, Pal S et al 2014 ACS Appl. Mater. Interfaces6 17926

    CAS  Google Scholar 

  27. Boyde A, Mccorkell F A, Taylor G K, Bomphrey R J and Doube M 2014 Microsc. Res. Tech.77 1044

    CAS  Google Scholar 

  28. Lei K, Chen Y, Wang J, Peng X, Yu L and Ding J 2017 Acta Biomater.55 396

    CAS  Google Scholar 

  29. Shiralizadeh S, Nasr-Isfahani H, Keivanloo A and Bakherad M 2016 RSC Adv.6 110400

    CAS  Google Scholar 

  30. Shiralizadeh S, Nasr-Isfahani H, Keivanloo A, Bakherad M, Yahyaei B and Pourali P 2018 J. Mater. Sci.53 9986

    Google Scholar 

  31. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V et al 2004 Science306 666

    CAS  Google Scholar 

  32. Dreyer D R, Todd A D and Bielawski C W 2014 Chem. Soc. Rev.43 5288

    CAS  Google Scholar 

  33. Park S and Ruoff R S 2009 Nat. Nanotechnol.4 217

    CAS  Google Scholar 

  34. Geim A K 2009 Science324 1530

    CAS  Google Scholar 

  35. Geim A K and Novoselov K S 2007 Nat. Mater.6 183

    CAS  Google Scholar 

  36. Yang K, Feng L, Shi X and Liu Z 2013 Chem. Soc. Rev.42 530

    CAS  Google Scholar 

  37. Narayanan T N, Gupta B K, Vithayathil S A, Aburto R R, Mani S A, Taha-Tijerina J et al 2012 Adv. Mater.24 2992

    CAS  Google Scholar 

  38. Jin Y, Wang J, Ke H, Wang S and Dai Z 2013 Biomaterials34 4794

    CAS  Google Scholar 

  39. Shi S, Yang K, Hong H, Valdovinos H F, Nayak T R, Zhang Y et al 2013 Biomaterials34 3002

    CAS  Google Scholar 

  40. Khansary M A, Mellat M, Saadat S H, Fasihi-Ramandi M, Kamali M and Taheri R A 2017 Chemosphere168 91

    CAS  Google Scholar 

  41. Taheri R A, Rezayan A H, Rahimi F, Mohammadnejad J and Kamali M 2016 Biosens. Bioelectron.86 484

    CAS  Google Scholar 

  42. Azin E, Moghimi H and Taheri R A 2017 Desalin. Water Treat.94 222

    CAS  Google Scholar 

  43. Hajipour H, Hamishehkar H, Nazari Soltan Ahmad S, Barghi S, Maroufi N F and Taheri R A 2018 Artif. Cells Nanomed. Biotechnol. doi: https://doi.org/10.1080/21691401.2017.1423493

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the ‘Clinical Research Development Center of Baqiyatallah Hospital’ for their kindly cooperation. The financial support of Shahrood University of Technology is gratefully acknowledged (Grant Number 50/3786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramezan Ali Taheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiralizadeh, S., Nasr-Isfahani, H., Amin, A.H. et al. Synthesis and characterization of inherently radiopaque nanocomposites using biocompatible iodinated poly(methyl methacrylate-co-acrylamide) and graphene oxide. Bull Mater Sci 43, 42 (2020). https://doi.org/10.1007/s12034-019-1999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1999-6

Keywords

Navigation