Skip to main content
Log in

Tuning magnetoresistance and electrical resistivity by enhancing localization length in polyaniline and carbon nanotube composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We report low temperature electrical resistivity and magnetoresistance (MR) measurements of conducting polyaniline (PANI) and multiwalled-carbon nanotube (MWCNT) composites. We have used an in-situ oxidative polymerization method to synthesize hydrochloric acid-doped PANI composites with MWCNT weight percentages of 0, 5, 10 and 15. The temperature dependence of resistivity is studied from room temperature to 4.2 K and analysed by a Mott variable range hopping (VRH) model. The resistivity increases from \(1.1\times 10^{-3}\,\Omega \mathrm {m}\) at 300 K to \(65.75\,\Omega \mathrm {m}\) at 4.2 K, almost four orders of the magnitude change with temperature for pure PANI. Whereas the PANI composite with 15% MWCNTs shows less variation from \(4.6\times 10^{-4}\,\mathrm{}\) to \(3.5\times 10^{-2}\,\Omega \mathrm{m}\). The huge change in resistivity is due to the localization of charge carriers in the presence of disorder. At 4.2 K MR shows transition from positive to negative with higher MWCNT loading. Samples with 5 and 10% MWCNTs show positive MR, whereas the 15% MWCNT loaded sample shows negative MR. The positive and negative MR are discussed in terms of the wave function shrinkage effect and quantum interference effect on VRH conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gobbi M and Orgiu E 2017 J. Mater. Chem. C 5 5572

    Article  CAS  Google Scholar 

  2. Geng R, Daugherty T T, Do K, Luong H M and Nguyen T D 2016 J. Sci. Adv. Mater. Devices 1 128

    Article  Google Scholar 

  3. Oksana Ostroverkhova 2019 Handbook of organic materials for electronic and photonic devices (Sawston, Cambridge, UK: Woodhead Publishing Series) ISBN number 9780857092656

  4. Sun D, Ehrenfreund E and Valy Vardeny Z 2014 Chem. Commun. 50 1781

    Article  CAS  Google Scholar 

  5. Alek Dediu V, Hueso L E, Bergenti I and Taliani C 2009 Nature Mater. 8 707

    Article  Google Scholar 

  6. Naber W J M, Faez S and Van Der Wiel W G 2007 J. Phys. D: Appl. Phys. 40 R205

    Article  CAS  Google Scholar 

  7. Sanvito S 2007 Nature Mater. 6 803

    Article  CAS  Google Scholar 

  8. Gustafsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N and Heeger A J 1992 Nature 357 347

    Article  Google Scholar 

  9. Janata J and Josowicz M 2003 Nature Mater. 2 19

    Article  CAS  Google Scholar 

  10. Snook G A, Kao P and Best A S 2011 J. Power Sources 196 1

  11. Novak P, Muller K, Santhanam K S V and Haas O 1997 Chem. Rev. 97 207

    Article  CAS  Google Scholar 

  12. Krebs F C 2009 Sol. Energy Mater. Sol. Cells 93 394

    Article  CAS  Google Scholar 

  13. Wong P T C, Chambers B, Anderson A P and Wright P V 1992 Electron. Lett. 28 1651

    Article  CAS  Google Scholar 

  14. Garnier F, Hajlaoui R, Yassar A and Srivastava P 1994 Science 265 1684

    Article  CAS  Google Scholar 

  15. Wang Y and Jing X 2005 Polymers Adv. Tech. 16 344

    Article  CAS  Google Scholar 

  16. Skotheim T A 1997 Handbook of conducting polymers (Boca Raton, Florida, USA: CRC Press) ISBN number 978-1-4200-4358-7

  17. Kaiser A B 2001 Rep. Prog. Phys. 64 1

    Article  CAS  Google Scholar 

  18. Wohlgenannt M 2012 Phys. Status Solidi RRL 6 229

    Article  CAS  Google Scholar 

  19. Koopmans B, Wagemans W, Bloom F L, Bobbert P A, Kemerink M and Wohlgenannt M 2011 Phil. Trans. R Soc. A 369 3602

    Article  CAS  Google Scholar 

  20. Kahol P K, Pererab R P, Satheesh Kumar K K, Geetha S and Trivedi D C 2003 Solid State Commun. 125 369

    Article  CAS  Google Scholar 

  21. Kahol P K, Pererab R P, Satheesh Kumar K K, Geetha S and Trivedi D C 2003 Synth. Metals 139 191

    Article  CAS  Google Scholar 

  22. Zuppiroli L, Bussac M N, Paschen S, Chauvet O and Forro L 1994 Phys. Rev. B 50 5196

    Article  CAS  Google Scholar 

  23. Yao Q, Chen L, Zhang W, Liufu S and Chen X 2010 ACS Nano 4 2445

    Article  CAS  Google Scholar 

  24. Jdzefowiczt M E and Epstein A J 1991 Macromolecules 24 779

    Article  Google Scholar 

  25. Maniwa Y, Fujiwara R, Kira H, Tou H, Nishibori E, Takata M et al 2001 Phys. Rev. B 64 073105

    Article  Google Scholar 

  26. Wu T-M, Lin Y-W and Liao C-S 2005 Carbon 43 734

    Article  CAS  Google Scholar 

  27. Schroder D K 2006 Semiconductor material and device characterization (Hoboken, New Jersey, USA: John Willey & Sons) ISBN number 978-0-471-73906-7

  28. Mott N F and Davis E A 2012 Electronic processes in non-crystalline materials (Oxford: OUP)

    Google Scholar 

  29. Long Y, Zhang L, Chen Z, Huang K, Yang Y, Xiao H et al 2005 Phys. Rev. B 71 165412

    Article  Google Scholar 

  30. Long Y Z, Yin Z H and Chen Z J 2008 J. Phys. Chem. C 112 11507

    Article  CAS  Google Scholar 

  31. Gu H, Guo J, Yan X, Wei H, Zhang X, Liu J et al 2014 Polymer 55 4405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Physics, Centre for Nano Science and Engineering and Advanced Facilities for Microscopy and Microanalysis at I.I.Sc., Bangalore for the support of research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanty, N., Patra, A., Maity, K.P. et al. Tuning magnetoresistance and electrical resistivity by enhancing localization length in polyaniline and carbon nanotube composites. Bull Mater Sci 42, 198 (2019). https://doi.org/10.1007/s12034-019-1890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1890-5

Keywords

Navigation