Skip to main content

Advertisement

Log in

Plastic crystal-incorporated magnesium ion conducting gel polymer electrolyte for battery application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Studies on a novel composition of magnesium ion conducting gel polymer electrolyte (GPE), comprising a solution of Mg-salt, magnesium trifluoromethanesulfonate (Mg-triflate or \(\hbox {Mg(Tf)}_{2})\) in a plastic crystal succinonitrile (SN), entrapped in a host polymer poly(vinylidenefluoride–hexafluoropropylene) (PVdF–HFP) was reported. Small amount of an ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf) was added to stabilize the GPE composition. The electrolyte possesses excellent dimensional integrity in the form of free-standing thick film, which offers the ionic conductivity of \(4 \times 10^{-3} \hbox { S } \hbox {cm}^{-1}\) at room temperature \({\sim }26{^{\circ }}\hbox {C}\). The electrochemical potential window of the electrolyte, observed from the linear sweep voltammetry, is determined to be \({\sim }4.1 \hbox { V}\). The magnesium ion conduction in the GPE film is confirmed from cyclic voltammetry, electrochemical impedance spectroscopy and dc polarization techniques. Different structural, thermal and electrochemical studies demonstrate the promising characteristics of the polymer film, suitable as electrolyte in rechargeable magnesium batteries. The potential of the GPE as electrolyte/separator was ascertained by fabricating a prototype magnesium battery of the configuration Mg:graphite composite \(\hbox {anode}/\hbox {GPE}/\hbox {MnO}_{2}\)-cathode. The specific discharge capacity of \(40 \hbox { mAh g}^{-1}\) (with respect to the \(\hbox {MnO}_{2}\) cathode material) was obtained at the first discharge. The cell shows charge–discharge performance for eight cycles with a substantial fading in capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scrosati B 2011 J. Solid State Electrochem. 15 1623

    Article  CAS  Google Scholar 

  2. Li C, Cheng F, Ji W and Tao Z 2009 Nano Res. 2 713

    Article  CAS  Google Scholar 

  3. Kumar G G and Munichandraiah N 2008 Solid State Ionics 128 203

    Article  Google Scholar 

  4. Yamanaka T, Hayashi A, Yamauchi A and Tatsumisago M 2014 Solid State Ionics 262 601

    Article  CAS  Google Scholar 

  5. Kumar G G and Munichandraiah N 2002 Electrochim. Acta 47 1013

    Article  CAS  Google Scholar 

  6. Winther J B, Gaadingwe M, Macfarlane D R and Forsyth M 2008 Electrochim. Acta 53 5881

    Article  Google Scholar 

  7. Sheha E 2009 Solid State Ionics 180 1575

    Article  CAS  Google Scholar 

  8. Polu A R, Kumar R and Rhee H W 2015 Ionics 21 125

    Article  CAS  Google Scholar 

  9. Bradwell D J, Kim H, Sirk A H C and Sadoway D R 2012 J. Am. Chem. Soc. 134 1895

    Article  CAS  Google Scholar 

  10. Aurbach D, Weissman I, Gofer Y and Levi E 2003 Chemical Record 3 61

    Article  CAS  Google Scholar 

  11. Muldoon J, Bucur C B, Oliver A G, Sugimoto T, Matsui M, Kim H S et al 2012 Energy Environ. Sci. 5 5941

    Article  CAS  Google Scholar 

  12. Oh J S, Ko J M and Kim D W 2004 Electrochim. Acta 50 903

    Article  CAS  Google Scholar 

  13. Aravindan V, Karthikaselvi G, Vickraman P and Naganandhini S P 2009 J. Appl. Polym. Sci. 112 3024

    Article  CAS  Google Scholar 

  14. Yoshimoto N, Yahushiji S, Ishikawa M and Morita M 2003 Electrochim. Acta 112 2317

    Article  Google Scholar 

  15. Narayanan N S V, Raj B V A and Sampath S 2010 J. Power Sources 195 4356

    Article  CAS  Google Scholar 

  16. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R et al 2000 Nature 407 724

    Article  CAS  Google Scholar 

  17. Yang L L, Huq R and Farrington G C 1986 Solid State Ionics 18–19 291

    Article  Google Scholar 

  18. Cherng J Y, Munshi M Z A, Owens B B and Smyrl W H 1988 Solid State Ionics 28–30 857

    Article  Google Scholar 

  19. Sharma J and Hashmi S A 2013 J. Solid State Electrochem. 17 2283

    Article  CAS  Google Scholar 

  20. Agrawal R C and Pandey G P 2008 J. Phys. D: Appl. Phys. 41 223001

    Article  Google Scholar 

  21. Xiao W, Li X, Guo H, Wang Z, Zhang Y and Zhang X 2012 Electrochim. Acta 85 612

    Article  CAS  Google Scholar 

  22. Kumar D and Hashmi S A 2010 Solid State Ionics 181 416

    Article  CAS  Google Scholar 

  23. Yang Y Q, Chang Z, Li M X, Wang X W and Wu Y P 2015 Solid State Ionics 269 1

    Article  CAS  Google Scholar 

  24. Suleman Md, Kumar Y and Hashmi S A 2013 J. Phys. Chem. B 117 7436

    Article  CAS  Google Scholar 

  25. Alarco P J, Lebdeh Y A, Abouimrane A and Armand M 2004 Nat. Mater. 3 476

    Article  CAS  Google Scholar 

  26. Das S, Prathapa J, Menezes P V, Row T N G and Bhattacharyya A J 2009 J. Phys. Chem. B 113 5025

    Article  CAS  Google Scholar 

  27. Fan L Z, Wang X L and Long F 2009 J. Power Sources 189 775

    Article  CAS  Google Scholar 

  28. Echeverri M, Kim N and Kyu T 2012 Macromolecules 45 6068

    Article  CAS  Google Scholar 

  29. Xu K, Ding M S and Jow T R 2001 Electrochim. Acta 46 1823

    Article  CAS  Google Scholar 

  30. Kumar G G and Munichandraiah N 1999 Electrochim. Acta 44 2663

    Article  CAS  Google Scholar 

  31. Hashmi S A and Chandra S 1995 J. Mater. Sci. Eng. B 34 18

    Article  Google Scholar 

  32. Aurbach D, Gofer Y, Lu Y, Schechter A, Chusid O, Gizbar H et al 2001 J. Power Sources 97–98 28

    Article  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge the financial support received from University of Delhi (Under the scheme to strengthen R & D Doctoral Research Programme by providing funds to University Faculty, 11-17 Research Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Hashmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, J., Hashmi, S.A. Plastic crystal-incorporated magnesium ion conducting gel polymer electrolyte for battery application. Bull Mater Sci 41, 147 (2018). https://doi.org/10.1007/s12034-018-1662-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1662-7

Keywords

Navigation