Skip to main content
Log in

Effect of CTAB coating on structural, magnetic and peroxidase mimic activity of ferric oxide nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, pristine and cetyl trimethyl ammonium bromide (CTAB)-coated ferric oxide nanoparticles \((\hbox {CTAB@Fe}_{2}\hbox {O}_{3} \hbox { NPs})\) were synthesized and studied as enzyme mimics. The w/w ratio of \(\hbox {Fe}_{2}\hbox {O}_{3}\) to CTAB was varied as 1:1 and 1:2. Transmission electron microscopic analysis revealed that pristine NPs had an average size of 50 nm, whereas the presence of CTAB resulted in the formation of nanorods with length of 130 nm. BET studies confirmed enhancement of surface area on CTAB coating, which was maximum for w/w ratio 1:1. The synthesized pristine NPs and CTAB-coated NPs were evaluated for their peroxidase mimic activity using o-dianisidine dihydrochloride as substrate. Optimum pH, temperature, substrate and NPs concentration for the reaction were 1, \(25^{\circ }{\mathrm{C}}\), \(0.16~\hbox {mg}~\hbox {ml}^{-1}\) and \(1~\hbox {mg}~\hbox {ml}^{-1}\), respectively. Peroxidase mimic activity of \(\hbox {CTAB@Fe}_{2}\hbox {O}_{3}\hbox { NPs}\) (w/w 1:1) was higher than that of pristine NPs. However, further increase in CTAB coating (w/w 1:2) resulted in lowering of peroxidase mimic activity. Kinetic analysis was carried out at optimized conditions; maximum velocity (\(V_{\mathrm{max}})\) and Michaelis constant (\(K_{\mathrm{m}})\) value of \(\hbox {CTAB@Fe}_{2}\hbox {O}_{3}\hbox { NPs}\) at 1:1 w/w ratio were 7.69 mM and \(1.12~\upmu \hbox {mol}~\hbox {s}^{-1}\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shoji E and Freund M S 2001 J. Am. Chem. Soc. 123 3383

    Article  CAS  Google Scholar 

  2. Breslow R 1995 Acc. Chem. Res. 28 146

    Article  CAS  Google Scholar 

  3. Wei H and Wang E 2013 Chem. Soc. Rev. 42 6060

    Article  CAS  Google Scholar 

  4. Colombo M, Carregal R S, Casula M F, Gutierrez L, Morales M P, Bohm I B et al 2012 Chem. Soc. Rev. 41 4306

    Article  CAS  Google Scholar 

  5. Chen W, Chen J, Feng Y B, Hong L, Chen Q Y, Wu L F et al 2012 Analyst 137 1706

    Article  CAS  Google Scholar 

  6. Chen Z, Yin J J, Zhou Y T, Zhang Y, Song L, Song M et al 2012 ACS Nano 6 4001

    Article  CAS  Google Scholar 

  7. Cui R, Han Z and Zhu J J 2011 Chem. Eur. J. 17 9377

    Article  CAS  Google Scholar 

  8. Song Y, Qu K, Zhao C, Ren J and Qu X 2010 Adv. Mater. 22 2206

    Article  CAS  Google Scholar 

  9. Zheng A X, Cong Z X, Wang J R, Li J, Yang H H and Chen G N 2013 Biosens. Bioelectron. 49 519

    Article  CAS  Google Scholar 

  10. Bi S, Zhao T, Jia X and He P 2014 Biosens. Bioelectron. 57 110

    Article  CAS  Google Scholar 

  11. Xing Z, Tian J, Asiri A M, Qusti A H, Al Youbi A O and Sun X 2014 Biosens. Bioelectron. 52 452

    Article  CAS  Google Scholar 

  12. Jiang H, Chen Z, Cao H and Huang Y 2012 Analyst 137 5560

    Article  CAS  Google Scholar 

  13. Jv Y, Li B and Cao R 2010 Chem. Commun. 46 8017

    Article  Google Scholar 

  14. Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R et al 2011 Adv. Funct. Mater. 21 501

    Article  CAS  Google Scholar 

  15. Chen W, Chen J, Liu A L, Wang L M, Li G W and Lin X H 2011 Chem. Cat. Chem. 3 1151

    CAS  Google Scholar 

  16. Mu J, Wang Y, Zhao M and Zhang L 2012 Chem. Commun. 48 2540

    Article  CAS  Google Scholar 

  17. Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N et al 2007 Nat. Nanotechnol. 2 577

    Article  CAS  Google Scholar 

  18. Henriksen A, Smith A T and Gajhede M 1999 J. Biol. Chem. 274 35005

    Article  CAS  Google Scholar 

  19. Kvaratskhelia M, Winkel C and Thorneley R N F 1997 Plant Physiol. 114 1237

    Article  CAS  Google Scholar 

  20. Kariya K, Lee E, Hirouchi M, Hosokawa M and Sayo H 1987 Biochim. Biophys. Acta 911 95

    Article  CAS  Google Scholar 

  21. Hartert M M, Bourgeois E, Grülke S, Dupont G D, Caudron I, Deby C et al 1998 Can. J. Vet. Res. 62 127

    Google Scholar 

  22. Yu F, Huang Y, Cole A J and Yang V C 2009 Biomaterials 30 4716

    Article  CAS  Google Scholar 

  23. Clement O, Siauve N, Cuenod C A and Frija G 1998 Top. Magn. Reson. Imaging 9 167

    Article  CAS  Google Scholar 

  24. Johnson L, Pinder S E and Douek M 2013 Histopathology 62 481

    Article  Google Scholar 

  25. Kernstine K H, Stanford W and Mullan B F 1999 Ann. Thorac. Surg. 68 1022

    Article  CAS  Google Scholar 

  26. Harisinghani M G, Saini S, Hahn P F, Weissleder R and Mueller P R 1998 Acad. Radiol. 5 167

    Article  Google Scholar 

  27. Reimer P and Balzer T 2003 Eur. Radiol. 13 1266

    Google Scholar 

  28. Vogl T J, Hammersting l R and Schwarz W 1996 Invest. Radiol. 31 696

    Article  CAS  Google Scholar 

  29. Reimer P, Rummeny E J and Daldrup H E 1995 Radiology 195 489

    Article  CAS  Google Scholar 

  30. Bonnemain B 1998 J. Drug Target. 6 167

    Article  CAS  Google Scholar 

  31. Campbell J L, Arora J, Cowell S F, Garg A, Eu P, Bhargava S K et al 2011 PLoS One 6 21857

    Article  Google Scholar 

  32. Bullivant J P, Zhao S, Willenberg B J, Kozissnik B, Batich C D and Dobson J 2013 Int. J. Mol. Sci. 14 17501

    Article  Google Scholar 

  33. Zhang Y, Xu D, Li W, Yu J and Chen Y 2012 J. Nanomater. 2012 1

    Google Scholar 

  34. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y et al 2010 Biomaterials 31 7606

    Article  CAS  Google Scholar 

  35. Deng J H, Zhang X R, Zeng G M, Gong J L, Niu Q Y and Liang J 2013 Chem. Eng. J. 226 189

    Article  CAS  Google Scholar 

  36. Grewal J K and Kaur M 2017 Ceram. Int. 43 16611

    Article  CAS  Google Scholar 

  37. Shannon L M, Kay E and Lew J Y 1966 J. Biol. Chem. 241 2166

    CAS  Google Scholar 

  38. Uzunov I and Aleksandrova A 2002 Chem. Inorg. 62 195

    Google Scholar 

  39. Hoan N T V, Thu N T A, Duc H V, Cuong N D, Khieu D Q and Vo V 2016 J. Chem. 2016 1

    Google Scholar 

  40. Zhao B and Nan Z 2011 Nanoscale Res. Lett. 6 1

    Google Scholar 

  41. Chen A, Wang H, Zhao B and Li X 2003 Synth. Met. 139 411

    Article  CAS  Google Scholar 

  42. Ubhi M K, Kaur M, Singh D and Granchee J M 2017 Pure Appl. Chem. 11 247

    Google Scholar 

  43. Johnson B B 1990 Environ. Sci. Technol. 24 112

    Article  CAS  Google Scholar 

  44. Cai S, Jia X, Han Q, Yan X, Yang R and Wang C 2017 Nano Res. 10 2056

    Article  CAS  Google Scholar 

  45. Savitsky A P, Nelen M I, Yatsmirsky A K, Demcheva M V, Ponomarev G V and Nikov I V 1994 Appl. Biochem. Biotechnol. 47 317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to EMN Lab of Punjab Agricultural University, Ludhiana, for SEM and TEM recordings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dikshit Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, D., Kaur, M., Sharma, S. et al. Effect of CTAB coating on structural, magnetic and peroxidase mimic activity of ferric oxide nanoparticles. Bull Mater Sci 41, 134 (2018). https://doi.org/10.1007/s12034-018-1650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1650-y

Keywords

Navigation