Skip to main content

Advertisement

Log in

Rose bengal-sensitized nanocrystalline ceria photoanode for dye-sensitized solar cell application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

For efficient charge injection and transportation, wide bandgap nanostructured metal oxide semiconductors with dye adsorption surface and higher electron mobility are essential properties for photoanode in dye-sensitized solar cells (DSSCs). TiO2-based DSSCs are well established and so far have demonstrated maximum power conversion efficiency when sensitized with ruthenium-based dyes. Quest for new materials and/or methods is continuous process in scientific investigation, for getting desired comparative results. The conduction band (CB) position of CeO2 photoanode lies below lowest unoccupied molecular orbital level (LUMO) of rose bengal (RB) dye. Due to this, faster electron transfer from LUMO level of RB dye to CB of CeO2 is facilitated. Recombination rate of electrons is less in CeO2 photoanode than that of TiO2 photoanode. Hence, the lifetime of electrons is more in CeO2 photoanode. Therefore, we have replaced TiO2 by ceria (CeO2) and expensive ruthenium-based dye by a low cost RB dye. In this study, we have synthesized CeO2 nanoparticles. X-ray diffraction (XRD) analysis confirms the formation of CeO2 with particle size ∼7 nm by Scherrer formula. The bandgap of 2.93 eV is calculated using UV–visible absorption data. The scanning electron microscopy (SEM) images show formation of porous structure of photoanode, which is useful for dye adsorption. The energy dispersive spectroscopy is in confirmation with XRD results, confirming the presence of Ce and O in the ratio of 1:2. UV–visible absorption under diffused reflectance spectra of dye-loaded photoanode confirms the successful dye loading. UV–visible transmission spectrum of CeO2 photoanode confirms the transparency of photoanode in visible region. The electrochemical impedance spectroscopy analysis confirms less recombination rate and more electron lifetime in RB-sensitized CeO2 than TiO2 photoanode. We found that CeO2 also showed with considerable difference between dark and light DSSCs performance, when loaded with RB dye. The working mechanism of solar cells with fluorine-doped tin oxide (FTO)/CeO2/RB dye/carbon-coated FTO is discussed. These solar cells show V OC ∼360 mV, J SC ∼0.25 mA cm−2 and fill factor ∼63% with efficiency of 0.23%. These results are better as compared to costly ruthenium dye-sensitized CeO2 photoanode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Lewis N S 2007 Science 315 798

    Article  Google Scholar 

  2. O’Regan B and Grätzel M 1991 Nature 353 737

    Article  Google Scholar 

  3. Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin S M and Gratzel M 2008 J. Am. Chem. Soc. 130 10720

    Article  Google Scholar 

  4. Singh R G, Gautam N, Gautam S K, Kumar V, Kapoor A and Singh F 2013 J. Renew. Sust. Energy 5 033134(1–8)

    Google Scholar 

  5. Khadtare S S, Jadkar S R and Pathan H M 2012 Int. J. Green Nanotechnol. 4 528

    Article  Google Scholar 

  6. Khadtare S S, Ware A P, Gawali S S, Jadkar S R, Pingale S S and Pathan H M 2015 RSC Adv. 5 17647

    Article  Google Scholar 

  7. Kumar V, Singh N, Kumar V, Purohit L P, Kapoor A, Ntwaeaborwa O M and Swart H C 2013 J. Appl. Phys. 114 134506(1–6)

    Google Scholar 

  8. Sayama K, Sugihara H and Arakawa H 1998 Chem. Mater. 10 3825

    Article  Google Scholar 

  9. Lenzmann F, Krueger J, Burnside S, Brooks K, Gra M, Gal D, Ru S and Cahen D 2001 J. Phys. Chem. B 105 6347

    Article  Google Scholar 

  10. Turkovic A and Crnjak Z 1997 Sol. Energy Mater. Sol. Cells 45 275

    Article  Google Scholar 

  11. Chappel S and Zaban A 2002 Sol. Energy Mater. Sol. Cells 71 141

    Article  Google Scholar 

  12. Shang G, Wu J, Huang M, Lin J, Lan Z, Huang Y and Fan L 2012 J. Phys. Chem. C 116 20140

    Article  Google Scholar 

  13. Nair S V, Balakrishnan A, Subramanian K R V, Anu A M, Asha A M and Deepika B 2012 Bull. Mater. Sci. 35 489

    Article  Google Scholar 

  14. Cyriac S L, Deepika B, Pillai B, Nair S V and Subramanian K R V 2014 Bull. Mater. Sci. 37 685

    Article  Google Scholar 

  15. Sharma Rajkumar G D and Roy M S 2011 Indian J. Pure Appl. Phys. 49 557

    Google Scholar 

  16. Baviskar P, Ennaoui A and Sankapal B R 2014 Solar Energy 105 445

    Article  Google Scholar 

  17. Sharma G D, Singh S P, Nagarjuna P, Mikroyannidis J A, Ball R J and Kurchania R 2013 J. Renew. Sust. Energy 5 043107 (1–7)

    Google Scholar 

  18. Hamann T W, Jensen R A, Martinson A B F, Ryswyk H V and Hupp J T 2008 Energy Environ. Sci. 1 66

    Article  Google Scholar 

  19. Mishra A, Fischer M K R and Bauerle P 2009 Angew. Chem. Int. Ed. 48 2474

    Article  Google Scholar 

  20. Sayyed S A A R, Beedri N I, Kadam V S and Pathan H M 2016 Appl. Nanosci. 6 875

  21. Tripathi M and Chawla P 2014 Ionics 21 541

    Article  Google Scholar 

  22. Rai P, Khan R, Ko K J, Lee J H and Yu Y T 2014 J. Mater. Sci.: Mater. Electron 25 2872

    Google Scholar 

  23. Lira-Cantu M and Krebs F C 2006 Sol. Energy Mater. Sol. Cells 90 2076

    Article  Google Scholar 

  24. Upadhyay R, Tripathi M, Chawla P and Pandey A 2014 J. Solid State Electrochem. 18 1889

    Article  Google Scholar 

  25. Hua Y, Yang B, Xu Z, Fengqui T, Max L G Q and Lianzhou W 2012 Chem. Commun. 48 7386

    Article  Google Scholar 

  26. Roh J, Hwang S H and Jang J 2014 ACS Appl. Mater. Interfaces 6 19825

    Article  Google Scholar 

  27. Elaziouti A, Laouedj N, Bekka A and Vannier R N 2014 Sciences Technologie A 39 9

    Google Scholar 

  28. Pradhan B, Batabyal S K and Pal A J 2007 Sol. Energy Mater. Sol. Cells 91 769

    Article  Google Scholar 

  29. Corma A, Atienzar P, Garcia H and Chane-Ching J 2004 Nat. Mater. 3 394

    Article  Google Scholar 

  30. Fan L, Ma Y, Wang X, Singh M and Zhu B 2014 J. Mater. Chem. A 2 5399

    Article  Google Scholar 

  31. Shehata N, Clavel M, Meehan K, Samir E, Soha G. and Salah M 2015 Materials 8 7663

    Article  Google Scholar 

  32. Godinho M J, Gonçalves R F, Santos L P S, Varela J A, Longo E and Leite E R 2007 Mater. Lett. 61 1904

    Article  Google Scholar 

  33. Liu Y H, Zuo J C, Ren X F and Yong L 2014 Metalurgija 53 463

    Google Scholar 

  34. Azaroff L V 1968 Elements of X-ray crystallography (New York: McGraw-Hill) p 552

  35. Orel Z and Orel B 1994 Phys. Status Solidi B 186 33

    Article  Google Scholar 

  36. Brus L E 1984 J. Chem. Phys. 80 4403

    Article  Google Scholar 

  37. Bueno R M, Martinez-Duart J M, Hernandez-Velez M and Vazquez L 1997 J. Mater. Sci. 32 1861

    Article  Google Scholar 

  38. Patsalas P, Logothetidis S, Sygellou L and Kennou S 2003 Phys. Rev. B 68 035104(1–13)

    Article  Google Scholar 

  39. Arote S, Ingle R, Tabhane V and Pathan H 2014 J. Renew. Sust. Energy 6 013132(1–9)

    Article  Google Scholar 

  40. Singh S P, Roy M S, Thomas K R J, Balaiah S, Bhanuprakash K and Sharma G D 2012 J. Phys. Chem. C 116 5941

    Article  Google Scholar 

  41. Liu G, Rodriguez J A, Hrbek J, Dvorak J and Peden C H F 2001 J. Phys. Chem. B 105 7762

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Board of College and University Development (BCUD), Savitribai Phule Pune University, Pune, for financial support through the minor research project OSD/BCUD/360/36. SAS is thankful to the Principal, Dr R J Barnabas, B.P.H.E. Society’s Ahmednagar College, Ahmednagar, for kind support and constant motivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HABIB M PATHAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A R SAYYED, S.A., BEEDRI, N.I., KADAM, V.S. et al. Rose bengal-sensitized nanocrystalline ceria photoanode for dye-sensitized solar cell application. Bull Mater Sci 39, 1381–1387 (2016). https://doi.org/10.1007/s12034-016-1279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1279-7

Keywords

Navigation