Skip to main content
Log in

Influence of annealing temperature on ZnO thin films grown by dual ion beam sputtering

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We have investigated the influence of in situ annealing on the optical, electrical, structural and morphological properties of ZnO thin films prepared on p-type Si(100) substrates by dual ion beam sputtering deposition (DIBSD) system. X-ray diffraction (XRD) measurements showed that all ZnO films have (002) preferred orientation. Full-width at half-maximum (FWHM) of XRD from the (002) crystal plane was observed to reach to a minimum value of 0.139° from ZnO film, annealed at 600 °C. Photoluminescence (PL) measurements demonstrated sharp near-band-edge emission (NBE) at ~ 380 nm along with broad deep level emissions (DLEs) at room temperature. Moreover, when the annealing temperature was increased from 400 to 600 °C, the ratio of NBE peak intensity to DLE peak intensity initially increased, however, it reduced at further increase in annealing temperature. In electrical characterization as well, when annealing temperature was increased from 400 to 600 °C, room temperature electron mobility enhanced from 6.534 to 13.326 cm2/V s, and then reduced with subsequent increase in temperature. Therefore, 600 °C annealing temperature produced good-quality ZnO film, suitable for optoelectronic devices fabrication. X-ray photoelectron spectroscopy (XPS) study revealed the presence of oxygen interstitials and vacancies point defects in ZnO film annealed at 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghamalyan N R et al 2003 Semicond. Sci. Technol. 18 525

    Article  Google Scholar 

  • Cullity B D 1979 Elements of X-ray diffraction (Reading, MA: Addison-Wesley) 2nd edn

    Google Scholar 

  • Fan H B, Yang S Y, Zhang P F, Wei H Y, Liu X L, Jiao C M, Zhu Q S, Chen Y H and Wang Z G 2007 Chin. Phys. Lett. 24 2108

    Article  Google Scholar 

  • Islam M N, Ghosh T B, Chopra K L and Acharya H N 1996 Thin Solid Films 280 20

    Article  Google Scholar 

  • Kang Hong Seong, Kang Jeong Seok, Kim Jae Won and Lee Sang Yeo 2004 J. Appl. Phys. 95 3

    Article  Google Scholar 

  • Kim Y J, Kim Y T, Yang H K, Park J C, Han 1 I, Lee Y E and Kim H J 1997 Vac. Sci. Technol. A15 1103

    Article  Google Scholar 

  • Kroger F A and Vink H J 1954 J. Chem. Phys. 22 250

    Article  Google Scholar 

  • Kumar Rajesh, Khare Neeraj, Kumar Vijay and Bhalla G L 2008 Appl. Surf. Sci. 254 6509

    Article  Google Scholar 

  • Leiter F H, Alves H R, Hofstaetter A, Hofmann D M and Meyer B K 2001 Phys. Status Solidi BR4 226

    Google Scholar 

  • Look D C 2001 Mater. Sci. Eng. B80 383

    Article  Google Scholar 

  • Look D C, Renlund G M, Burgeber R H and Sizelove J R 2004 Appl. Phys. Lett. 85 5269

    Article  Google Scholar 

  • Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Cantwell G and Harsch W C 1998 Solid State Commun. 105 39

    Article  Google Scholar 

  • Makino T, Segawa Y, Tsukazaki A, Ohtomo A and Kawasaki M 2005 Appl. Phys. Lett. 87 022101

    Article  Google Scholar 

  • Pandey Sushil Kumar, Pandey Saurabh Kumar, Mukherjee C, Mishra P, Gupta M, Barman S R, D’Souza S W and Mukherjee Shaibal 2013 J. Mater. Sci.: Mater. Electron. 24 2541

    Google Scholar 

  • Pearton S J, Abernathy C R, Overberg M E, Thaler G T and Norton D P 2003 J. Appl. Phys. 93 1

    Article  Google Scholar 

  • Pearton S J, Norton D P, Ip K, Heo Y W and Steiner T 2005 Prog. Mater. Sci. 50 293

    Article  Google Scholar 

  • Puchert M K, Timbrell P Y and Lamb R N 1996 J. Vac. Sci. Technol. A14 4

    Google Scholar 

  • Rao T P, Kumar M C S, Safarulla A, Ganesan V, Barman S R and Sanjeeviraja C 2010 Physica B405 2226

    Google Scholar 

  • Reynolds D C, Look D C and Jogai B 1996 Solid State Commun. 99 873

    Article  Google Scholar 

  • Studenikin S A, Golego N and Cocivera M 1998 J. Appl. Phys. 84 2287

    Article  Google Scholar 

  • Vanheusden K, Seager C H, Warren W L, Trallant D R, Caruso J, Hampden-Smith M J and Kodas T T 1997 J. Lumin. 75 11

    Article  Google Scholar 

  • Vanheusden K, Warren W L, Seager C H, Trallant D R and Voigt J A 1996 J. Appl. Phys. 79 7983

    Article  Google Scholar 

  • Van de Walle C G 2000 Phys. Rev. Lett. 85 1012

    Article  Google Scholar 

  • Yu Chang-Feng, Sung Che-Wei, Chen Sy-Hann and Sun Shih-Jye 2009 Appl. Surf. Sci. 256 792

    Article  Google Scholar 

  • Zhang J P, Zhang L D, Zhu L Q, Zhang Y, Liu M and Wang X J 2007 J. Appl. Phys. 102 114903

    Article  Google Scholar 

  • Zhao Jun-Liang, Li Xiao-Min, Bian Ji-Ming, Yu Wei-Dong and Gao Xiang-Dong 2005 J. Cryst. Growth 50 276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaibal Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S.K., Pandey, S.K., Awasthi, V. et al. Influence of annealing temperature on ZnO thin films grown by dual ion beam sputtering. Bull Mater Sci 37, 983–989 (2014). https://doi.org/10.1007/s12034-014-0035-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0035-0

Keywords

Navigation