Skip to main content
Log in

Waking Up the Sleep Field: An Overview on the Implications of Genetics and Bioinformatics of Sleep

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Sleep genetics is an intriguing, as yet less understood, understudied, emerging area of biological and medical discipline. A generalist may not be aware of the current status of the field given the variety of journals that have published studies on the genetics of sleep and the circadian clock over the years. For researchers venturing into this fascinating area, this review thus includes fundamental features of circadian rhythm and genetic variables impacting sleep–wake cycles. Sleep/wake pathway medication exposure and susceptibility are influenced by genetic variations, and the responsiveness of sleep-related medicines is influenced by several functional polymorphisms. This review highlights the features of the circadian timing system and then a genetic perspective on wakefulness and sleep, as well as the relationship between sleep genetics and sleep disorders. Neurotransmission genes, as well as circadian and sleep/wake receptors, exhibit functional variability. Experiments on animals and humans have shown that these genetic variants impact clock systems, signaling pathways, nature, amount, duration, type, intensity, quality, and quantity of sleep. In this regard, the overview covers research on sleep genetics, the genomic properties of several popular model species used in sleep studies, homologs of mammalian genes, sleep disorders, and related genes. In addition, the study includes a brief discussion of sleep, narcolepsy, and restless legs syndrome from the viewpoint of a model organism. It is suggested that the understanding of genetic clues on sleep function and sleep disorders may, in future, result in an evidence-based, personalized treatment of sleep disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data that support the findings of this review are available in standard research databases, such as PubMed, Science Direct, or Google Scholar, and/or on public domains that can be searched with either key words or DOI numbers.

References

  1. Hartse, K. M. (2017). Phylogeny of sleep. Sleep Disorders Medicine: Basic Science, Technical Considerations and Clinical Aspects, 127–142.

  2. Pandi-Perumal, S., Spence, D. W., Brown, G. M., & Thorpy, M. J. (2010). Great challenges to sleep medicine: Problems and paradigms. Frontiers in Neurology, 1, 2080.

    Article  Google Scholar 

  3. Chattu, V. K., Chattu, S. K., Burman, D., Spence, D. W., & Pandi-Perumal, S. R. (2019). The interlinked rising epidemic of insufficient sleep and diabetes mellitus. In MDPI (Vol. 7, No. 1, p. 37).

  4. Chattu, V. K., Manzar, M. D., Kumary, S., Burman, D., Spence, D. W., & Pandi-Perumal, S. R. (2018). The global problem of insufficient sleep and its serious public health implications. In MDPI (Vol. 7, No. 1, p. 1).

  5. Chattu, V. K., Sakhamuri, S. M., Kumar, R., Spence, D. W., BaHammam, A. S., & Pandi-Perumal, S. R. (2018). Insufficient Sleep Syndrome: Is it time to classify it as a major noncommunicable disease? Sleep Science, 11, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  6. De Mello, M. T., Narciso, F. V., Tufik, S., Paiva, T., Spence, D. W., BaHammam, A. S., Verster, J. C., & Pandi-Perumal, S. R. (2013). Sleep disorders as a cause of motor vehicle collisions. International Journal of Preventive Medicine, 4, 246.

    PubMed  PubMed Central  Google Scholar 

  7. Pandi-Perumal, S. R., Verster, J. C., Kayumov, L., Lowe, A. D., Santana, M. G. D., Pires, M. L. N., Tufik, S., & Mello, M. T. D. (2006). Sleep disorders, sleepiness and traffic safety: A public health menace. Brazilian Journal of Medical and Biological Research, 39, 863–871.

    Article  CAS  PubMed  Google Scholar 

  8. Kronholm, E., Partonen, T., Härmä, M., Hublin, C., Lallukka, T., Peltonen, M., & Laatikainen, T. (2016). Prevalence of insomnia-related symptoms continues to increase in the Finnish working-age population. Journal of Sleep Research, 25, 454–457.

    Article  PubMed  Google Scholar 

  9. Pallesen, S., Sivertsen, B., Nordhus, I. H., & Bjorvatn, B. (2014). A 10-year trend of insomnia prevalence in the adult Norwegian population. Sleep Medicine, 15, 173–179.

    Article  PubMed  Google Scholar 

  10. Karthikeyan, R., Spence, D. W., & Pandi-Perumal, S. R. (2019). The contribution of modern 24-hour society to the development of type 2 diabetes mellitus: The role of insufficient sleep. Sleep Science, 12, 227.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chattu, V. K., Chattu, S. K., Spence, D. W., Manzar, M. D., Burman, D., & Pandi-Perumal, S. R. (2019). Do disparities in sleep duration among racial and ethnic minorities contribute to differences in disease prevalence? Journal of Racial and Ethnic Health Disparities, 6, 1053–1061.

    Article  PubMed  Google Scholar 

  12. Jehan, S., Myers, A. K., Zizi, F., Pandi-Perumal, S. R., Jean-Louis, G., Singh, N., Ray, J., & McFarlane, S. I. (2018). Sleep health disparity: The putative role of race, ethnicity and socioeconomic status. Sleep Medicine and Disorders: International Journal, 2, 127.

    PubMed  Google Scholar 

  13. Anafi, R. C., Kayser, M. S., & Raizen, D. M. (2019). Exploring phylogeny to find the function of sleep. Nature Reviews Neuroscience, 20, 109–116.

    Article  CAS  PubMed  Google Scholar 

  14. Campbell, S. S., & Tobler, I. (1984). Animal sleep: A review of sleep duration across phylogeny. Neuroscience & Biobehavioral Reviews, 8, 269–300.

    Article  CAS  Google Scholar 

  15. Greenspan, R. J., Tononi, G., Cirelli, C., & Shaw, P. J. (2001). Sleep and the fruit fly. Trends in Neurosciences, 24, 142–145.

    Article  CAS  PubMed  Google Scholar 

  16. Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A., & Pack, A. I. (2000). Rest in Drosophila is a sleep-like state. Neuron, 25, 129–138.

    Article  CAS  PubMed  Google Scholar 

  17. Koh, K., Joiner, W. J., Wu, M. N., Yue, Z., Smith, C. J., & Sehgal, A. (2008). Identification of SLEEPLESS, a sleep-promoting factor. Science, 321, 372–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science, 287, 1834–1837.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, H., Zhu, C.-T., Skuja, L. L., Hayden, D. J., & Hart, A. C. (2017). Genome-wide screen for genes involved in Caenorhabditis elegans developmentally timed sleep. G3: Genes Genomes, Genetics, 7, 2907–2917.

    Article  CAS  PubMed  Google Scholar 

  20. Lawler, D. E., Chew, Y. L., Hawk, J. D., Aljobeh, A., Schafer, W. R., & Albrecht, D. R. (2021). Sleep analysis in adult C. elegans reveals state-dependent alteration of neural and behavioral responses. Journal of Neuroscience, 41, 1892–1907.

    Article  CAS  PubMed  Google Scholar 

  21. Nagy, S., Tramm, N., Sanders, J., Iwanir, S., Shirley, I. A., Levine, E., & Biron, D. (2014). Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms. Elife, 3, e04380.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Niu, L., Li, Y., Zong, P., Liu, P., Shui, Y., Chen, B., & Wang, Z.-W. (2020). Melatonin promotes sleep by activating the BK channel in C. elegans. Proceedings of the National Academy of Sciences, 117, 25128–25137.

    Article  CAS  Google Scholar 

  23. Raizen, D. M., Zimmerman, J. E., Maycock, M. H., Ta, U. D., You, Y.-J., Sundaram, M. V., & Pack, A. I. (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature, 451, 569–572.

    Article  CAS  PubMed  Google Scholar 

  24. Prober, D. A., Rihel, J., Onah, A. A., Sung, R.-J., & Schier, A. F. (2006). Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. Journal of Neuroscience, 26, 13400–13410.

    Article  CAS  PubMed  Google Scholar 

  25. Yokogawa, T., Marin, W., Faraco, J., Pézeron, G., Appelbaum, L., Zhang, J., Rosa, F., Mourrain, P., & Mignot, E. (2007). Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS biology, 5, e277.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhdanova, I. V. (2011). Sleep and its regulation in zebrafish.

  27. Zhdanova, I. V., Wang, S. Y., Leclair, O. U., & Danilova, N. P. (2001). Melatonin promotes sleep-like state in zebrafish. Brain Research, 903, 263–268.

    Article  CAS  PubMed  Google Scholar 

  28. Huber, R., Hill, S. L., Holladay, C., Biesiadecki, M., Tononi, G., & Cirelli, C. (2004). Sleep homeostasis in Drosophila melanogaster. Sleep, 27, 628–639.

    Article  PubMed  Google Scholar 

  29. Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine neurons. Science, 307, 1642–1645.

    Article  CAS  PubMed  Google Scholar 

  30. Medori, R., Tritschler, H.-J., LeBlanc, A., Villare, F., Manetto, V., Chen, H. Y., Xue, R., Leal, S., Montagna, P., & Cortelli, P. (1992). Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. New England Journal of Medicine, 326, 444–449.

    Article  CAS  PubMed  Google Scholar 

  31. Winkelmann, J., & Kimura, M. (2011). Genetics of sleep disorders. In Handbook of clinical neurology (pp. 681–693). Elsevier.

  32. Allada, R., & Siegel, J. M. (2008). Unearthing the phylogenetic roots of sleep. Current Biology, 18, R670–R679.

    Article  CAS  PubMed  Google Scholar 

  33. Bhattacharjee, G., Gohil, N., Khambhati, K., Mani, I., Maurya, R., Karapurkar, J. K., Gohil, J., Chu, D.-T., Vu-Thi, H., & Alzahrani, K. J. (2022). Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. Journal of Controlled Release, 343, 703–723.

    Article  CAS  PubMed  Google Scholar 

  34. Bharathkumar, N., Sunil, A., Meera, P., Aksah, S., Kannan, M., Saravanan, K. M., & Anand, T. (2022). CRISPR/Cas-based modifications for therapeutic applications: A review. Molecular Biotechnology, 64, 355–372.

    Article  CAS  PubMed  Google Scholar 

  35. Fayyaz, M., Chew, K. W., Show, P. L., Ling, T. C., Ng, I.-S., & Chang, J.-S. (2020). Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology Advances, 43, 107554.

    Article  CAS  PubMed  Google Scholar 

  36. Teng, S. Y., Yew, G. Y., Sukačová, K., Show, P. L., Máša, V., & Chang, J.-S. (2020). Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnology Advances, 44, 107631.

    Article  CAS  PubMed  Google Scholar 

  37. Sreeraman, S., Kannan, M. P., Singh Kushwah, R. B., Sundaram, V., Veluchamy, A., Thirunavukarasou, A., & Saravanan, K. M. (2023). Drug design and disease diagnosis: The potential of deep learning models in biology. Current Bioinformatics, 18, 208–220.

    Article  CAS  Google Scholar 

  38. Bjorness, T. E., Kelly, C. L., Gao, T., Poffenberger, V., & Greene, R. W. (2009). Control and function of the homeostatic sleep response by adenosine A1 receptors. Journal of Neuroscience, 29, 1267–1276.

    Article  CAS  PubMed  Google Scholar 

  39. Halberg, F. (1959). Physiologic 24-hour periodicity; general and procedural considerations with reference to the adrenal cycle. Z. Vitamin-, Hormon-u Fermentforsch, 10, 225.

    CAS  Google Scholar 

  40. Ashton, A., Foster, R. G., & Jagannath, A. (2022). Photic entrainment of the circadian system. International Journal of Molecular Sciences, 23, 729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dean, T., Xu, R., Joiner, W., Sehgal, A., & Hoshi, T. (2011). Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of Shaker K+ channels. Journal of Neuroscience, 31, 11387–11395.

    Article  CAS  PubMed  Google Scholar 

  42. Cirelli, C. (2009). The genetic and molecular regulation of sleep: From fruit flies to humans. Nature Reviews Neuroscience, 10, 549–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ambrosius, U., Lietzenmaier, S., Wehrle, R., Wichniak, A., Kalus, S., Winkelmann, J., Bettecken, T., Holsboer, F., Yassouridis, A., & Friess, E. (2008). Heritability of sleep electroencephalogram. Biological Psychiatry, 64, 344–348.

    Article  PubMed  Google Scholar 

  44. Ebisawa, T. (2007). Circadian rhythms in the CNS and peripheral clock disorders: Human sleep disorders and clock genes. Journal of Pharmacological Sciences, 103, 150–154.

    Article  CAS  PubMed  Google Scholar 

  45. Aidman, E., Jackson, S. A., & Kleitman, S. (2019). Effects of sleep deprivation on executive functioning, cognitive abilities, metacognitive confidence, and decision making. Applied Cognitive Psychology, 33, 188–200.

    Article  Google Scholar 

  46. Blake, H., & Gerard, R. (1937). Brain potentials during sleep. American Journal of Physiology-Legacy Content, 119, 692–703.

    Article  Google Scholar 

  47. Zhu, M., & Zhao, S. (2007). Candidate gene identification approach: Progress and challenges. International Journal of Biological Sciences, 3, 420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Freeman, D., Sheaves, B., Goodwin, G. M., Yu, L.-M., Nickless, A., Harrison, P. J., Emsley, R., Luik, A. I., Foster, R. G., & Wadekar, V. (2017). The effects of improving sleep on mental health (OASIS): A randomised controlled trial with mediation analysis. The Lancet Psychiatry, 4, 749–758.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jansen, P. R., Watanabe, K., Stringer, S., Skene, N., Bryois, J., Hammerschlag, A. R., de Leeuw, C. A., Benjamins, J. S., Muñoz-Manchado, A. B., & Nagel, M. (2019). Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nature Genetics, 51, 394–403.

    Article  CAS  PubMed  Google Scholar 

  50. Lane, J. M., Jones, S. E., Dashti, H. S., Wood, A. R., Aragam, K. G., van Hees, V. T., Strand, L. B., Winsvold, B. S., Wang, H., & Bowden, J. (2019). Biological and clinical insights from genetics of insomnia symptoms. Nature Genetics, 51, 387–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bathgate, C. J., Edinger, J. D., Wyatt, J. K., & Krystal, A. D. (2016). Objective but not subjective short sleep duration associated with increased risk for hypertension in individuals with insomnia. Sleep, 39, 1037–1045.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lange, T., Perras, B., Fehm, H. L., & Born, J. (2003). Sleep enhances the human antibody response to hepatitis A vaccination. Psychosomatic Medicine, 65, 831–835.

    Article  PubMed  Google Scholar 

  53. Chenini, S., Barateau, L., & Dauvilliers, Y. (2023). Restless legs syndrome: From clinic to personalized medicine. Revue Neurologique.

  54. Bonati, M. T., Ferini-Strambi, L., Aridon, P., Oldani, A., Zucconi, M., & Casari, G. (2003). Autosomal dominant restless legs syndrome maps on chromosome 14q. Brain, 126, 1485–1492.

    Article  PubMed  Google Scholar 

  55. Winkelmann, J., Schormair, B., Lichtner, P., Ripke, S., Xiong, L., Jalilzadeh, S., Fulda, S., Pütz, B., Eckstein, G., & Hauk, S. (2007). Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nature Genetics, 39, 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  56. Akçimen, F., Sarayloo, F., Liao, C., Ross, J. P., Oliveira, R. D. B., Dion, P. A., & Rouleau, G. A. (2020). Transcriptome-wide association study for restless legs syndrome identifies new susceptibility genes. Communications Biology, 3, 373.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jiang, Y.-J., Fann, C.S.-J., Fuh, J.-L., Chung, M.-Y., Huang, H.-Y., Chu, K.-C., Wang, Y.-F., Hsu, C.-L., Kao, L.-S., & Chen, S.-P. (2022). Genome-wide analysis identified novel susceptible genes of restless legs syndrome in migraineurs. The Journal of Headache and Pain, 23, 1–13.

    Article  Google Scholar 

  58. Miyagawa, T., & Tokunaga, K. (2019). Genetics of narcolepsy. Human Genome Variation, 6, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Manzar, M. D., & Hussain, M. E. (2012). Sleep–immune system interaction: Advantages and challenges of human sleep loss model. Frontiers in Neurology, 3, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Raizen, D. (2020). Worms sleep: A perspective. Journal of Neurogenetics, 34, 427–429.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hernandez, P. J., & Abel, T. (2011). A molecular basis for interactions between sleep and memory. Sleep Medicine Clinics, 6, 71–84.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Alhola, P., & Polo-Kantola, P. (2007). Sleep deprivation: Impact on cognitive performance. Neuropsychiatric Disease and Treatment, 3, 553–567.

    PubMed  PubMed Central  Google Scholar 

  63. Seugnet, L., Suzuki, Y., Vine, L., Gottschalk, L., & Shaw, P. J. (2008). D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Current Biology, 18, 1110–1117.

    Article  CAS  PubMed  Google Scholar 

  64. Havekes, R., Park, A. J., Tudor, J. C., Luczak, V. G., Hansen, R. T., Ferri, S. L., Bruinenberg, V. M., Poplawski, S. G., Day, J. P., & Aton, S. J. (2016). Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1. eLife, 5, e13424.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Frank, M. G. (2015). Sleep and synaptic plasticity in the developing and adult brain. Sleep, Neuronal Plasticity and Brain Function 123–149.

  66. Cirelli, C., & Bushey, D. (2008). Sleep and wakefulness in Drosophila melanogaster. Annals of the New York Academy of Sciences, 1129, 323–329.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dubowy, C., & Sehgal, A. (2017). Circadian rhythms and sleep in Drosophila melanogaster. Genetics, 205, 1373–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brown, M. K., Chan, M. T., Zimmerman, J. E., Pack, A. I., Jackson, N. E., & Naidoo, N. (2014). Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis. Neurobiology of Aging, 35, 1431–1441.

    Article  CAS  PubMed  Google Scholar 

  69. Harbison, S. T. (2022). What have we learned about sleep from selective breeding strategies? Sleep, 45, 147.

    Article  Google Scholar 

  70. Tafti, M. (2007). Quantitative genetics of sleep in inbred mice. Dialogues in Clinical Neuroscience, 9(3), 273–278.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Parish, J. M. (2013). Genetic and immunologic aspects of sleep and sleep disorders. Chest, 143, 1489–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Summa, K. C., & Turek, F. W. (2011). The genetics of sleep: Insight from rodent models. Sleep medicine clinics, 6, 141–154.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kobayashi, R., Yamashita, Y., Suzuki, H., Hatori, S., Tomita, J., & Kume, K. (2023). rdgB knockdown in neurons reduced nocturnal sleep in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 643, 24–29.

    Article  CAS  PubMed  Google Scholar 

  74. Wang, H., Cade, B. E., Sofer, T., Sands, S. A., Chen, H., Browning, S. R., Stilp, A. M., Louie, T. L., Thornton, T. A., & Johnson, W. C. (2019). Admixture mapping identifies novel loci for obstructive sleep apnea in Hispanic/Latino Americans. Human molecular genetics, 28, 675–687.

    Article  CAS  PubMed  Google Scholar 

  75. Archer, S. N., Laing, E. E., Möller-Levet, C. S., van der Veen, D. R., Bucca, G., Lazar, A. S., Santhi, N., Slak, A., Kabiljo, R., & von Schantz, M. (2014). Mistimed sleep disrupts circadian regulation of the human transcriptome. Proceedings of the National Academy of Sciences, 111, E682–E691.

    Article  CAS  Google Scholar 

  76. Cheng, H., Jin, S., Huang, S., Hu, T., Zhao, M., Li, D., & Wu, B. (2022). Serum Proteomic Analysis by Tandem Mass Tag-Based Quantitative Proteomics in Pediatric Obstructive Sleep Apnea. Frontiers in Molecular Biosciences, 9, 762336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ollila, H.M., Sharon, E., Lin, L., Sinnott-Armstrong, N., Ambati, A., Hillary, R.P., Jolanki, O., Faraco, J., Einen, M., and Luo, G. (2018). Narcolepsy risk loci are enriched in immune cells and suggest autoimmune modulation of the T cell receptor repertoire. Biorxiv, 373555.

  78. Liu, C., Tang, X., Gong, Z., Zeng, W., Hou, Q., & Lu, R. (2022). Circadian rhythm sleep disorders: Genetics, mechanisms, and adverse effects on health. Frontiers in Genetics, 13, 875342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Krohn, L., Heilbron, K., Blauwendraat, C., Reynolds, R. H., Yu, E., Senkevich, K., Rudakou, U., Estiar, M. A., Gustavsson, E. K., & Brolin, K. (2022). Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects. Nature Communications, 13, 7496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Because of space limitations, the writers of this review sincerely apologize to those authors whose work could not be cited.

Funding

No funding has been reported for this study.

Author information

Authors and Affiliations

Authors

Contributions

All listed authors have made a substantial, direct, and equal intellectual contribution to the work and have approved for the publication of this manuscript.

Corresponding author

Correspondence to Saravana Babu Chidambaram.

Ethics declarations

Conflict of interest

The authors state that no commercial or financial ties that might be considered a possible conflict of interest existed during the research.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandi-Perumal, S.R., Saravanan, K.M., Paul, S. et al. Waking Up the Sleep Field: An Overview on the Implications of Genetics and Bioinformatics of Sleep. Mol Biotechnol 66, 919–931 (2024). https://doi.org/10.1007/s12033-023-01009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01009-1

Keywords

Navigation