Skip to main content

Advertisement

Log in

Identification and Validation of Genes Exhibiting Dynamic Alterations in Response to Bleomycin-Induced Pulmonary Fibrosis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Idiopathic pulmonary fibrosis (IPF) carries a high mortality rate and has a poor prognosis. The pathogenesis of pulmonary fibrosis (PF) is highly related to dysregulation of multiple RNAs. This study aims to identify and validate dysregulated RNAs that exhibited dynamic alterations in response to bleomycin (BLM)-induced PF. The results will provide therapeutic targets for patients suffering from IPF. Whole transcriptomic profiles of BLM-induced PF were obtained through high-throughput RNA sequencing. miRNA profiling was downloaded from GSE45789 database in the Gene Expression Omnibus (GEO). We identified the differentially expressed RNAs (DERNAs) that exhibited dynamic alterations in response to BLM-induced PF. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis were conducted to discovery regulatory processes of PF. Weighted gene co-expression network analysis (WGCNA), protein–protein interaction (PPI) analysis, and co-expression analysis were performed to identify key genes and pathogenic pattern during the progression of PF. MiRanda, miRcode, and TargetScan were utilized to predict target relationships in the potential competing endogenous RNA (ceRNA) network. The results were verified by qRT-PCR analysis. In the context of BLM-induced PF, this study identified a total of 167 differentially expressed messenger RNAs (DEmRNAs), 115 differentially expressed long non-coding RNAs (DElncRNAs), 45 differentially expressed circular RNAs (DEcircRNAs), and 87 differentially expressed microRNAs (DEmiRNAs). These RNA molecules showed dynamic alterations in response to BLM-induced PF. These DEmRNAs exhibited a predominant association with the biological processes pertaining to the organization of extracellular matrix. A regulatory network was built in PF, encompassing 31 DEmRNAs, 18 DE lncRNAs, 13 DEcircRNAs, and 13 DEmiRNAs. Several DERNA molecules were subjected to validate using additional BLM-induced PF model. The outcomes of this validation process shown a strong correlation with the results obtained from RNA sequencing analysis. The GSE213001 dataset was utilized to validate the expression levels and diagnostic efficacy of four specific hub mRNAs (CCDC80, CLU, COL5A1, and COL6A3) in individuals diagnosed with PF. In this study, we identified and validated several RNA molecules that exhibited dynamic alternations in response to BLM-induced PF. These dysregulated RNAs participated in the pathogenesis of PF and can be used as therapeutic targets for early-stage IPF. Although more work must be done to confirm the results, our study may provide directions for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

NGS data are available from the NCBI Sequence Read Archive database (BioProject: PRJNA962191).

Abbreviations

IPF:

Idiopathic pulmonary fibrosis

ILD:

Interstitial lung disease

GEO:

Gene Expression Omnibus

DERNAs:

Differentially expressed RNAs

CeRNA:

Competiting endogenous RNA

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genome

PPI:

Protein–protein interaction

WGCNA:

Weighted gene co-expression network analysis

ncRNAs:

Non-coding RNAs

PCA:

Principal component analysis

FMT:

Fibroblast-to-myofibroblast transition

EMT:

Epithelial-mesenchymal transition

BLM:

Bleomycin

qRT-PCR:

Quantitative Real-Time PCR

DEGs:

Differentially expressed genes

ROC:

Receive operating characteristic

AUCs:

The area under the curve

References

  1. Raghu, G., Remy-Jardin, M., Richeldi, L., et al. (2022). Idiopathic pulmonary fibrosis (an Update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. American Journal of Respiratory and Critical Care Medicine, 205(9), e18–e47.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Spagnolo, P., Kropski, J. A., Jones, M. G., et al. (2021). Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacology & therpeutics, 222, 107798.

    Article  CAS  Google Scholar 

  3. Thannickal, V. J., Toews, G. B., White, E. S., Lynch, J. P., 3rd., & Martinez, F. J. (2004). Mechanisms of pulmonary fibrosis. Annual Review of Medicine, 55, 395–417.

    Article  CAS  PubMed  Google Scholar 

  4. Ren, Z., Pan, X., Li, J., et al. (2023). G protein coupled receptor 41 regulates fibroblast activation in pulmonary fibrosis via Gα(i/o) and downstream Smad2/3 and ERK1/2 phosphorylation. Pharmacological Research, 191, 106754.

    Article  CAS  PubMed  Google Scholar 

  5. Morse, C., Tabib, T., Sembrat, J., et al. (2019). Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. The European Respiratory Journal, 54(2), 1802441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, S. S., Liu, C., Lv, X. X., et al. (2021). The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis. Immunity, 54(9), 2042–56.e8.

    Article  CAS  PubMed  Google Scholar 

  7. Justet, A., Ghanem, M., Boghanim, T., et al. (2022). FGF19 is downregulated in idiopathic pulmonary fibrosis and inhibits lung fibrosis in mice. American Journal of Respiratory Cell and Molecular Biology, 67(2), 173–187.

    Article  CAS  PubMed  Google Scholar 

  8. Kraven, L. M., Taylor, A. R., Molyneaux, P. L., et al. (2023). Cluster analysis of transcriptomic datasets to identify endotypes of idiopathic pulmonary fibrosis. Thorax, 78(6), 551–558.

    Article  PubMed  Google Scholar 

  9. Liu, H., Wang, B., Zhang, J., et al. (2017). A novel lnc-PCF promotes the proliferation of TGF-β1-activated epithelial cells by targeting miR-344a-5p to regulate map3k11 in pulmonary fibrosis. Cell Death & Disease, 8(10), e3137.

    Article  CAS  Google Scholar 

  10. Cui, H., Banerjee, S., Guo, S., et al. (2019). Long noncoding RNA Malat1 regulates differential activation of macrophages and response to lung injury. JCI Insight. https://doi.org/10.1172/jci.insight.124522

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xu, Q., Cheng, D., Li, G., et al. (2021). CircHIPK3 regulates pulmonary fibrosis by facilitating glycolysis in miR-30a-3p/FOXK2-dependent manner. International Journal of Biological Sciences, 17(9), 2294–2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, Q., Liu, Y., Xie, Y., Wei, S., & Liu, Y. (2021). Identification of potential ceRNA network and patterns of immune cell infiltration in systemic Sclerosis-associated interstitial lung disease. Frontiers in Cell and Developmental Biology, 9, 622021.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, Q., Chen, X., Kan, M., et al. (2021). Gypenoside XLIX loaded nanoparticles targeting therapy for renal fibrosis and its mechanism. European Journal of Pharmacology, 910, 174501.

    Article  CAS  PubMed  Google Scholar 

  14. Ashcroft, T., Simpson, J. M., & Timbrell, V. (1988). Simple method of estimating severity of pulmonary fibrosis on a numerical scale. Journal of Clinical Pathology, 41(4), 467–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, F., Xu, H., Liu, C., et al. (2021). Whole-transcriptome sequencing reveals a vernalization-related ceRNA regulatory network in chinese cabbage (Brassica campestris L. ssp pekinensis). BMC Genomics, 22(1), 819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Niu, Y., Zhang, L., Qiu, H., et al. (2015). An improved method for detecting circulating microRNAs with S-Poly(T) Plus real-time PCR. Scientific Reports, 5, 15100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Selman, M., & Pardo, A. (2002). Idiopathic pulmonary fibrosis: An epithelial/fibroblastic cross-talk disorder. Respiratory Research, 3(1), 3.

    Article  PubMed  Google Scholar 

  19. Hormuzdi, S. G., Strandjord, T. P., Madtes, D. K., & Bornstein, P. (1999). Mice with a targeted intronic deletion in the Col1a1 gene respond to bleomycin-induced pulmonary fibrosis with increased expression of the mutant allele. Matrix Biology : Journal of the International Society for Matrix Biology, 18(3), 287–294.

    Article  CAS  PubMed  Google Scholar 

  20. Kunugi, S., Fukuda, Y., Ishizaki, M., & Yamanaka, N. (2001). Role of MMP-2 in alveolar epithelial cell repair after bleomycin administration in rabbits. Laboratory investigation: A Journal of Technical Methods and Pathology, 81(9), 1309–1318.

    Article  CAS  PubMed  Google Scholar 

  21. Hung, C. F., Rohani, M. G., Lee, S. S., Chen, P., & Schnapp, L. M. (2013). Role of IGF-1 pathway in lung fibroblast activation. Respiratory Research, 14(1), 102.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dong, Y., Geng, Y., Li, L., et al. (2015). Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. The Journal of Experimental Medicine, 212(2), 235–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Son, E. S., Fei, X., Yoon, J. H., et al. (2021). Comparison of Pharmacokinetics and Anti-Pulmonary Fibrosis-Related Effects of Sulforaphane and Sulforaphane N-acetylcysteine. Pharmaceutics, 13(7), 958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parra, E. R., Teodoro, W. R., de Morais, J., et al. (2010). Increased mRNA expression of collagen V gene in pulmonary fibrosis of systemic sclerosis. European Journal of Clinical Investigation, 40(2), 110–120.

    Article  CAS  PubMed  Google Scholar 

  25. Jessen, H., Hoyer, N., Prior, T. S., et al. (2021). Turnover of type I and III collagen predicts progression of idiopathic pulmonary fibrosis. Respiratory Research, 22(1), 205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hamaguchi, Y., Fujimoto, M., Matsushita, T., Hasegawa, M., Takehara, K., & Sato, S. (2008). Elevated serum insulin-like growth factor (IGF-1) and IGF binding protein-3 levels in patients with systemic sclerosis: Possible role in development of fibrosis. The Journal of Rheumatology, 35(12), 2363–2371.

    Article  CAS  PubMed  Google Scholar 

  27. Snyder-Talkington, B. N., Dong, C., Sargent, L. M., et al. (2016). mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice. Journal of Applied Toxicology : JAT, 36(1), 161–174.

    Article  CAS  PubMed  Google Scholar 

  28. Makiguchi, T., Yamada, M., Yoshioka, Y., et al. (2016). Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research, 17(1), 110.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jia, R., Li, T., & Wang, N. (2021). Long noncoding RNA HOTAIR functions as ceRNA to regulate MMP2 in paraquat induced lung epithelial-mesenchymal transition. Toxicology, 461, 152891.

    Article  CAS  PubMed  Google Scholar 

  30. Jeon, S., Jin, H., Kim, J. M., et al. (2023). The miR-15b-Smurf2-HSP27 axis promotes pulmonary fibrosis. Journal of Biomedical Science, 30(1), 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lei, X., He, N., Zhu, L., et al. (2021). Mesenchymal stem cell-derived extracellular vesicles attenuate radiation-induced lung injury via miRNA-214-3p. Antioxidants & Redox Signaling, 35(11), 849–862.

    Article  CAS  Google Scholar 

  32. Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi pp. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146(3), 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fatica, A., & Bozzoni, I. (2014). Long non-coding RNAs: New players in cell differentiation and development. Nature Reviews Genetics, 15(1), 7–21.

    Article  CAS  PubMed  Google Scholar 

  34. Tay, Y., Rinn, J., & Pandolfi pp. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature, 505(7483), 344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tay, Y., Kats, L., Salmena, L., et al. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147(2), 344–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taulli, R., Loretelli, C., & Pandolfi pp. (2013). From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition. Nature Structural & Molecular Biology, 20(5), 541–543.

    Article  CAS  Google Scholar 

  37. Guil, S., & Esteller, M. (2015). RNA-RNA interactions in gene regulation: The coding and noncoding players. Trends in Biochemical Sciences, 40(5), 248–256.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, Y., Lu, F. A., Wang, L., Wang, Y. F., & Wu, C. F. (2021). Long non-coding RNA NEAT1 promotes pulmonary fibrosis by regulating the microRNA-455-3p/SMAD3 axis. Molecular Medicine Reports. https://doi.org/10.3892/mmr.2021.11857

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thomson, D. W., & Dinger, M. E. (2016). Endogenous microRNA sponges: Evidence and controversy. Nature Reviews Genetics, 17(5), 272–283.

    Article  CAS  PubMed  Google Scholar 

  40. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P., & Stoffel, M. (2014). Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Molecular cell, 54(5), 766–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, J., Li, P., Zhang, G., Qin, P., Zhang, D., & Zhao, W. (2020). CircRNA TADA2A relieves idiopathic pulmonary fibrosis by inhibiting proliferation and activation of fibroblasts. Cell Death & Disease, 11(7), 553.

    Article  CAS  Google Scholar 

  42. Fang, S., Guo, H., Cheng, Y., et al. (2018). circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1. Cell Death & Disease, 9(3), 396.

    Article  Google Scholar 

  43. Lin, W., Song, Y., Li, T., et al. (2023). Triptolide attenuates pulmonary fibrosis by inhibiting fibrotic extracellular matrix remodeling mediated by MMPs/LOX/integrin. Biomedicine & Pharmacotherapy Biomedecine & Pharmacotherapie, 166, 115394.

    Article  CAS  Google Scholar 

  44. Zheng, S., Zhang, Y., Hou, Y., et al. (2023). Underlying Molecular Mechanism and Construction of a miRNA-Gene Network in Idiopathic Pulmonary Fibrosis by Bioinformatics. International Journal of Molecular Sciences, 24(17), 13305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zou, M., Zou, J., Hu, X., Zheng, W., Zhang, M., & Cheng, Z. (2021). Latent transforming growth Factor-β binding protein-2 regulates lung fibroblast-to-Myofibroblast differentiation in pulmonary fibrosis via NF-κB Signaling. Frontiers in Pharmacology, 12, 788714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jin, Y. K., Li, X. H., Wang, W., et al. (2018). Follistatin-like 1 promotes Bleomycin-induced pulmonary fibrosis through the transforming growth factor Beta 1/mitogen-activated protein kinase signaling pathway. Chinese Medical Journal, 131(16), 1917–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by The National Natural Science Foundation of China (89202586), Joint Application Foundation Project of Kunming Medical University and Yunnan Provincial Science and Technology Department (202101AY070001-271 and 202001AY070001-289), and Open Project of Yunnan Provincial Clinical Medical Center for Respiratory System Diseases (2020LCZXKF-HX08, 2022LCZXKF-HX04).

Author information

Authors and Affiliations

Authors

Contributions

YHZ and DMG: designed the study. DYL and JZ: constructed the BLM-induced PF mice model. JW, SJL, LQ, GHF and KW: performed comprehensive bioinformatics analysis. DYL, DXS, and ZMH: performed the qRT-PCR validation. DYL: wrote the article. JW, DMG and YHZ: revised the article. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Deming Gou or Yunhui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures comply with National Institutes of Health guidelines (NIH Publication, 8th edition, 2011), and were approved by the Institutional Animal Care and Use Committee (IACUC) of The First People’s Hospital of Yunnan Province.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 125 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, J., Zeng, J. et al. Identification and Validation of Genes Exhibiting Dynamic Alterations in Response to Bleomycin-Induced Pulmonary Fibrosis. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00943-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00943-4

Keywords

Navigation