Skip to main content

Advertisement

Log in

Phytochemical and Pharmacological Properties of a Traditional Herb, Strobilanthes Cusia (Nees) Kuntze

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The present investigation aimed to determine the effectiveness of bioactive components extracted from Hom herbs (Strobilanthes cusia (Nees) Kuntze) using the solvent-free microwave-assisted extraction (MAE) method. The obtained bioactive components were analyzed for total phenolic content (TPC) and active ingredient content. The Hom extracts were examined for antioxidant, antibacterial, anti-inflammatory, cytotoxic, and anticancer activities. The comparative analysis of extraction methods MAE was studied by using different solvents such as ethanol (EtOH), 50% ethanol (50EtOH) and distilled water (DW). The results obtained by the MAE method with DW as solvent show the TPC of 104.41±1.36 mg GAE/g crude and tryptanthrin 0.1138±0.0014 mg/g crude and indigo 0.0622±0.0015 mg/g crude. Comparatively, values ​​detected in the 50% EtOH extract were not significantly different at the 95% confidence level. At the same time, levels of indirubin were detected at levels equivalent to that of ethanol extracts. The DW extract from MAE had an IC50 value against the DPPH scavenging assay of 0.1927±0.0756 mg/ml, comparable to the test results of extracts of ethanol and 50% ethanol. The bioactive extracted using the MAE with water as solvent had minimum inhibitory concentration (MIC) and could suppress infection at 10 mg/disc. It was also observed that the extracts from the conventional extraction technique using ethanol as the solvent continued to be highly effective against Bacillus cereus even after employing the EtOH or 50% EtOH. Hom extract’s MIC value representing inhibiting B. cereus was 0.625 mg/disc. Still, EtOH-extracted Hom demonstrated the highest cytotoxicity against 16HBEo- by reducing cell survival rate by less than 50% while the others did not. Interestingly, Hom that had been extracted using 50EtOH and DW with MAE had an anticancer impact on A549 by reducing the survival rate in a dose-dependent manner.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author PB upon reasonable request.

References

  1. The Plant List (2013). “Strobilanthes cusia (Nees) Kuntze.”: http://www.theplantlist.org/tpl1.1/record/kew-2476975.

  2. The Royal Botanic Gardens,Kew science. “Strobilanthes cusia (Nees) Kuntze.”: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:55627-1).

  3. Panyaphua, K., Van On, T., Sirisa-ard, P., Srisa-nga, P., ChansaKaow, S., & Nathakarnkitkula, S. (2011). Medicinal plants of the mien (Yao) in Northern Thailand and their potential value in the primary healthcare of postpartum women. Journal of Ethnopharmacology, 135, 226–237.

    Article  Google Scholar 

  4. Qin, M. Z., Liu, Y., Wu, W., Oberhansli, T., & Wang-Muller, Q. (2020). The Chemical components and pharmacological functions of Strobilanthes Cusia (Nees) Kuntze. Herbal Medicine, 6, 2472–0151.

    Google Scholar 

  5. Lee, C., Wang, C. M., Hu, H. C., Yen, H. R., Song, Y. C., Yu, S. J., Chen, C. J., Li, W. C., & Wu, Y. C. (2019). Indole alkaloids indigodoles A–C from aerial parts of Strobilanthes cusia in the traditional chinese medicine Qing Dai have anti-IL-17 properties. Phytochemistry, 162, 39–46.

    Article  CAS  PubMed  Google Scholar 

  6. Wei, Y. (2010). Effects of Baphicacanthus cusia (nees) Bremek extract on the antibacterial activity of lincomycin in vitro. Journal of Anhui Agricultural Sciences, 38, 2927–2928.

    Google Scholar 

  7. Lee, C. L., Wang, C. M., Kuo, Y. H., Yen, H. R., Song, Y. C., Chou, Y. L., & Chen, C. J. (2020). IL-17A inhibitions of indole alkaloids from traditional chinese medicine Qing Dai. Journal of Ethanopharmacology, 255, 112772.

    Article  CAS  Google Scholar 

  8. Zhou, B., Yang, Z., Feng, Q., Liang, X., Li, J., Zanin, M., Jiang, Z., & Nanshan, Z. (2017). Aurantiamide acetate from baphicacanthus cusia root exhibits anti-imfloammatory and antiviral effects via inhibition of the NF-kappaB signaling pathway in influenza a virus-infected cells. Journal of Ethnopharmacology, 199, 60–67.

    Article  CAS  PubMed  Google Scholar 

  9. Zeng, Q., Luo, C., Cho, J., Lai, D., Shen, X., Zhang, X., & Zhou, W. (2021). Tryptanthrin exerts anti-breast cancer effects both in vitro and in vivo through modulating the inflammatory tumor microenvironment. Acta Pharmaceuticca, 71, 245–266.

    Article  CAS  Google Scholar 

  10. Wu, L. M., Yang, R. P., Zhu, C. X., Gong, Z. M., Deng, M. Y., & Li, X. Z. (1978). Study on the effective components of indigo naturalis in the treatment of chronic myelogenous leukemia. Chinese Traditional and Herbal Drugs, 4, 6–8.

    Google Scholar 

  11. Gaitanis, G., Magiatis, P., Velegraki, A., & Bassukas, I. D. (2018). A traditional chinese remedy points to a natural skin habitat: Indirubin (indigo naturalis) for psoriasis and the Malassezia metabolome. British Journal of Dermatology, 179, 800.

    Article  CAS  PubMed  Google Scholar 

  12. Chiang, Y. R., Leu, Y. L., Fang, J. Y., & Kin, Y. K. (2013). An in vitro study of the antimicrobial effects of indigo naturalis prepared from Strobilanthes formosanus Moore. Molecules, 18(11), 14381–14396.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sun, Q., Leng, J., Tang, L., Wang, L., & Fu, C. (2021). A comprehensive review of the chemistry, pharmacokinetics, pharmacology, clinical applications, adverse events, and quality control of indiogo naturalis. Frontiers in Pharmacology, 12, 664022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mukhtar, K., Nabi, B. G., Arshad, R. N., Roobab, U., Yaseen, B., Ranjha, M. M., Aadil, R. M., & Ibrahim, S. A. (2022). Potential impact of ultrasound, pulsed electric field, high-pressure processing, microfludization against thermal treatments preservation regarding sugarcane juice (Saccharum officinarum). Ultrasonics Sonochemistry, 10, 106194.

    Article  Google Scholar 

  15. Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ngo, T. V., Scarlett, C. J., Bowyer, M. C., Ngo, P. D., & Vuong, Q. V. (2017). Impact of different extraction solvent on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality, https://doi.org/10.1155/2017/9305047

    Article  Google Scholar 

  17. Albuquerque, B. R., Prieto, M. A., Barreiro, M. F., Rodrigues, A., Curran, T. P., Barros, L., & Ferreira, I. C. F. R. (2017). Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Industrial Crops and Products, 95, 404–415.

    Article  CAS  Google Scholar 

  18. Jovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Separation and Purification Technology, 179, 369–380.

    Article  Google Scholar 

  19. Xu, Z., Cai, Y., Ma, Q., Zhao, Z., Yang, D., & Xu, X. (2021). Optimization of extraction of bioactive compounds from Baphicacanthus cusia leaves by hydrophobic deep eutectic solvents. Molecules, 26, 1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grozdanova, T., Trusheva, B., Alipieva, K., Popova, M., Dimitrova, L., Najdenski, H., Zaharieva, M. M., Ilieva, Y., Vasileva, B., Miloshe, G., Georgieva, M., & Bankova, V. (2020). Extracts of medicinal plants with natural deep eutectic solveents: Enhanced antimicrobial activity and low genotoxicity. BMC Chemistry, 14, 73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vergara-Salinas, J. R., Bulnes, P., Zuniga, M. C., Perez-Jimenez, J., Torres, J. L., Mateos-Martin, M. L., Agosin, E., & Perez-Correa, J. R. (2013). Efect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. Journal of Agricultural and Food Chemistry, 61(28), 6929–6936.

    Article  CAS  PubMed  Google Scholar 

  22. Xu, J., Zhao, W. M., Qian, Z. M., Guan, J., & Li, S. P. (2010). Fast determination of five components of coumarin, alkaloids and bibenzyls in Dendrobium spp. using pressurized liquid extraction and ultra-performance liquid chromatography. Journal of Separation Science, 33(11), 1580–1586.

    Article  CAS  PubMed  Google Scholar 

  23. Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional com pounds from plant materials. Trends in Analytical Chemistry, 97, 159–178.

    Article  CAS  Google Scholar 

  24. Zhao, G., Li, T., Qu, X., Zhang, N., Lu, M., & Wang, J. (2017). Optimization of ultrasound-assisted extraction of indigo and indirubin from Isatis indigotica Fort. and their antioxidant capacities. Food Science and Biotechnology, 26, 1313–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benmoussa, H., Farhat, A., Romdhane, M., & Bouajila, J. (2019). Enhanced solvent-free microwave extraction of Foeniculum vulgare Mill. essential oil seeds using double walled reactor. Arabian Journal of Chemistry, 12, 3863–3870.

    Article  CAS  Google Scholar 

  26. Barba, F. J., Zhu, Z., Koubaa, M., & Sant’Ana, A. S. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology, 49, 96–109.

    Article  CAS  Google Scholar 

  27. Susawaengsup, C., Jaradrattanapaiboon, A., Sornsakdanuphap, J., Choengpanya, K., Jaradrattanapaiboon, Y., Tongkoom, K., & Bhuyar, P. (2022). Effect of fertilization combined with shading on growth and aromatic constituents of Niamhom (Strobilanthes nivea Craib) using an internet of things (IoT) controlled Irrigation System. Horticulturae, 8(12), 1130.

    Article  Google Scholar 

  28. Sundararaju, S., Arumugam, M., & Bhuyar, P. (2020). Microbacterium sp. MRS-1, a potential bacterium for cobalt reduction and synthesis of less/non-toxic cobalt oxide nanoparticles (Co3O4). Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 1–9.

    Article  Google Scholar 

  29. Liu, Z., Wang, L., Zhang, L., Wu, X., Nie, G., Chen, C., & Wang, Y. (2016). Metabolic characteristics of 16HBE and A549 cells exposed to different surface modified gold nanorods. Advanced Healthcare Materials, 5(18), 2363–2375.

    Article  CAS  PubMed  Google Scholar 

  30. Guzowska, M., Wasiak, W., & Wawrzyniak, R. (2022). comparison of extraction techniques for the determination of volatile organic compounds in liverwort samples. Molecules, 27, 2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dairi, S., Dahmoune, F., Belbahi, A., Remini, H., Kadri, N., Aoun, O., & Madani, K. (2021). Optimization of microwave extraction method of phenolic compounds from red onion using response surface methodology and inhibition of lipoprotein low-density oxidation. Journal of Applied Research on Medicinal and Aromatic Plants, 22, 100301.

    Article  CAS  Google Scholar 

  32. Jin, S., Yang, M., Kong, Y., Yao, X., Wei, Z., Zu, Y., & Fu, Y. (2011). Microwave-assisted extraction of favonoids from Cajanus cajan leaves. Zhongcaoyao, 42(11), 2235–2239.

    CAS  Google Scholar 

  33. Chen, R., Li, Y., Dong, H., Liu, Z., Li, S., Yang, S., & Li, X. (2012). Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum Caudatum Ait and evaluation of its biological activities. Ultrasonics Sonochemistry, 19, 1160–1168.

    Article  CAS  PubMed  Google Scholar 

  34. Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content and antioxidant activity of Limnophila aromatica. Journal of food and drug Analysis, 22(3), 296–302.

    Article  CAS  PubMed  Google Scholar 

  35. Chan, C. H., Yusoff, R., Ngoh, G. C., & Kung, F. W. L. (2011). Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography A, 1218(37), 6213–6225.

    Article  CAS  PubMed  Google Scholar 

  36. Chaimanee, V., Kaewpreecha, K., & Songsri, S. (2020). Antibacterial activity of Strobilanthes cusia (Nees) Kuntze crude extract. Journal of Agricultural Research and Extension.

  37. Chan, H. L., Yip, H. Y., Mak, N. K., & Leung, K. N. (2009). Modulatory effects and action mechanisms of tryptanthrin on murine myeloid leukemia cells. Cellular & Molecular Immunology, 6(5), 335–342.

    Article  CAS  Google Scholar 

  38. Li, Z., Wang, H., Wei, J., Han, L., & Guo, Z. (2020). Indirubin exerts anticancer effects on human glioma cells by inducing apoptosis and autophagy. AMB Express 2020, 10(1), 171.

    Article  CAS  Google Scholar 

  39. Chang, H. N., Huang, S. T., Yeh, Y. C., Wang, H. S., Wang, T. H., Wu, Y. H., & Pang, J. H. (2015). Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting akt and FAK signaling in human vascular endothelial cells. Journal of Ethnopharmacology, 174, 474–481.

    Article  CAS  PubMed  Google Scholar 

  40. Alshamrani, M., Khan, M. K., Khan, B. A., Salawi, A., & Almoshari, Y. (2022). Technologies for solubility, dissolution and permeation enhancement of natural compounds. Pharmaceuticals (Basel). https://doi.org/10.3390/ph15060653

    Article  PubMed  PubMed Central  Google Scholar 

  41. Agafonova, I. G., & Moskovkina, T. V. (2015). Studies on anti-inflammatory action of tryptanthrin, using a model of DSS-induced colitis of mice and magnetic resonance imaging. Applied Magnetic Resonance, 46(7), 781–791. https://doi.org/10.1007/s00723-015-0674-3

    Article  CAS  Google Scholar 

  42. Kirpotina, L. N., Schepetkin, I. A., Hammaker, D., Kuhs, A., Khlebnikov, A. I., & Quinn, M. T. (2020). Therapeutic Effects of Tryptanthrin and Tryptanthrin-6-Oxime in Models of Rheumatoid Arthritis. Frontiers Pharmacology, 11, 1145.

    Article  CAS  Google Scholar 

  43. Nguyen, L. T. H., Oh, T. W., Choi, M. J., Yang, I. J., & Shin, H. M. (2021). Anti-Psoriatic Effects and IL-22 targeting mechanism of indirubin by suppressing keratinocyte inflammation and proliferation. Applied Sciences, 11(24), 11599.

    Article  CAS  Google Scholar 

  44. Mehwish, H. M., Liu, G., Rajoka, M. S., Cai, H., Zhong, J., Song, X., Xia, L., Wang, M., Aadil, R. M., Inam-Ur-Raheem, M., & Xiong, Y. (2021). Therapeutic potential of Moringa oleifera seed polysaccharide embedded silver nanoparticles in wound healing. International Journal of Biological Macromolecules, 184, 144–158.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Research Council of Thailand (NRCT).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, CS: methodology, CS: software, CS: validation, CS, AJ: formal analysis, CS: investigation, CS: resources, XX: data curation, CS: writing—original draft preparation, CS, KC, JS, LT, MC, and PB: writing—review and editing, CS, KC, JS, LT, MC and PB: visualization, CS: supervision, CS: project administration, CS: funding acquisition, CS: All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Chanthana Susawaengsup or Prakash Bhuyar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susawaengsup, C., Choengpanya, K., Sornsakdanuphap, J. et al. Phytochemical and Pharmacological Properties of a Traditional Herb, Strobilanthes Cusia (Nees) Kuntze. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00897-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00897-7

Keywords

Navigation