Skip to main content
Log in

In Silico and Experimental Studies on the Effect of α3 and α5 Deletion on the Biochemical Properties of Bacillus thermocatenulatus Lipase

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the effect of α3 and α5 helices on the biochemical characterization of Bacillus thermocatenulatus lipase (BTL2), both helices were deleted from native BTL2 lipase. After structural modeling and characterization, the truncated btl2 gene (Δbtl2) was cloned into E. coli BL21 under the control of the T7 promoter. After cultivation and induction of the recombinant bacteria, the Δα3α5 lipase was purified by Ni–NTA column chromatography. Next, the biochemical properties of the Δα3α5 lipase were compared with the previously expressed and purified native lipase. In the presence of the substrate tributyrin (C4), the maximum activity of native and Δα3α5 lipase was 9360 and 5000 U/mg, respectively. The deletion changed the substrate specificity from tributyrin (C4) to tricaprylin (C8) substrate. Native and Δα3α5 lipase showed similar activity patterns at all temperatures and pH values, with the activity of Δα3α5 lipase being approximately 20% lower than native lipase. Triton X100 increased the activity of native and Δα3α5 lipases by 2.1- and 2.5-fold, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All authors certify that all data and materials support published claims and comply with field standards.

References:

  1. Nardini, M., & Dijkstra, B. W. (1999). Alpha/beta hydrolase fold enzymes: The family keeps growing. Current Opinion in Structural Biology, 9, 732–737.

    Article  CAS  PubMed  Google Scholar 

  2. Patel, G. B., & Shah, K. R. (2020). Isolation, screening and identification of Lipase producing fungi from cotton seed soapstock. Indian Journal of Science and Technology, 13, 3762–3771.

    Article  CAS  Google Scholar 

  3. Ergan, F., Trani, M., & Andre, G. (1990). Production of glycerides from glycerol and fatty acid by immobilized lipases in non-aqueous media. Biotechnology and Bioengineering, 35, 195–200.

    Article  CAS  PubMed  Google Scholar 

  4. Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397.

    Article  CAS  PubMed  Google Scholar 

  5. Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781.

    Article  CAS  PubMed  Google Scholar 

  6. Margolin, A. L. (1993). Enzymes in the synthesis of chiral drugs. Enyzme and Microbial Technology, 15, 266–280.

    Article  CAS  Google Scholar 

  7. Karadzic, I., Masui, A., Zivkovic, L. I., & Fujiwara, N. (2006). Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. Journal of Bioscience and Bioengineering, 102, 82–89.

    Article  CAS  PubMed  Google Scholar 

  8. Rajendran, A., Palanisamy, A., & Thangavelu, V. (2009). Lipase catalyzed ester synthesis for food processing industries. Brazil Arch Biol Technol., 52, 207–219.

    Article  CAS  Google Scholar 

  9. Basheer, S. M., Chellappan, S., Beena, P. S., Sukumaran, R. K., Elyas, K. K., & Chandrasekaran, M. (2011). Lipase from marine Aspergillus awamori BTMFW032: Production, partial purification and application in oil effluent treatment. New Biotechnology, 28, 627–638.

    Article  CAS  PubMed  Google Scholar 

  10. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag, J., et al. (1992). The alpha/beta hydrolase fold. Protein Engineering, 5, 197–211.

    Article  CAS  PubMed  Google Scholar 

  11. Tyndall, J., Sinchaikul, S., Gilmore, L., Taylor, P., & Walkinshaw, M. (2002). Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1. Journal of Molecular Biology, 323, 859–869.

    Article  CAS  PubMed  Google Scholar 

  12. Pouderoyen, G. V., Eggert, T., Jaeger, K. E., & Dijkstra, B. W. (2001). The Crystal structure of Bacillus subtilis Lipase: A minimal α/β hydrolase fold enzyme. Journal of Molecular Biology, 309, 215–226.

    Article  PubMed  Google Scholar 

  13. Sayali, K., Sadichha, P., & Surekha, S. (2013). Microbial esterases: An overview. International Journal of Current Microbiology and Applied Sciences, 2, 135–146.

    Google Scholar 

  14. Jochens, H., Hesseler, M., Stiba, K., Padhi, S. K., Kazlauskas, R. J., & Bornscheuer, U. T. (2011). Protein engineering of α/β-hydrolase fold enzymes. Chembiochem, 12, 1508–1517.

    Article  CAS  PubMed  Google Scholar 

  15. Goodarzi, N., Karkhane, A. A., Mirlohi, A., Tabandeh, F., Torktas, I., Aminzadeh, S., Yakhchali, B., Shamsara, M., & Ghafouri, M. A. (2014). Protein engineering of Bacillus thermocatenulatus lipase via deletion of the α5 helix. Applied Biochemistry and Biotechnology, 174, 339–351.

    Article  CAS  PubMed  Google Scholar 

  16. Carrasco-Lopez, C., Godoy, C., de Las, R. B., & Fernandez-Lorente, G. (2009). Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. Journal of Biological Chemistry, 284, 4365–4372.

    Article  CAS  PubMed  Google Scholar 

  17. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X, 1–2, 19–25.

    Google Scholar 

  20. Laskowski, R. A., Macarthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  21. Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Structure Function, and Bioinformatics, 71, 261–277.

    Article  CAS  Google Scholar 

  22. Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sciences, 2, 1511–1519.

    Article  CAS  Google Scholar 

  23. Wiederstein, M., & Sippl, M. J. (2007). Interactive web service for the recognition of errors in three dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Humphrey, W., Dalke, A., & Sculten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

    Article  CAS  PubMed  Google Scholar 

  25. Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Molegro Virtual Docker for docking. Methods in Molecular Biology, 2053, 149–167.

    Article  CAS  PubMed  Google Scholar 

  26. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40, W294–W297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmidt-Dannert, C., Sztajer, H., Stocklein, W., Menge, U., & Schmid, R. D. (1994). Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochimica et Biophysica Acta, 1214, 43–53.

    Article  CAS  PubMed  Google Scholar 

  29. Quyen, D. T., Schmidt-Dannert, C., & Schmid, R. D. (2003). High-level expression of a lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase. Protein Expression and Purification, 28, 102–110.

    Article  CAS  PubMed  Google Scholar 

  30. Karkhane, A. A., Yakhchali, B., Rastgar Jazii, F., & Bambai, B. (2009). The effect of substitution of Phe181 and Phe182 with Ala on activity, substrate specificity and stabilization of substrate at the active site of Bacillus thermocatenulatus lipase. Journal of Molecular Catalysis B Enzymatic, 61, 162–167.

    Article  CAS  Google Scholar 

  31. Ma’ruf, I. F., Widhiastuty, M. P., & Suharti, M. M. R. (2021). Effect of mutation at oxyanion hole residue (H110F) on activity of Lk4 lipase. Biotechnology Reports (Amsterdam, Netherlands), 29, e00590.

    PubMed  Google Scholar 

  32. Shiraga, S., Ishiguro, M., Fukami, H., Nakao, M., & Ueda, M. (2005). Creation of Rhizopus oryzae lipase having unique oxyanion hole by combinatorial mutagenesis in the lid domain. Applied Microbiology, 68, 779–785.

    CAS  Google Scholar 

  33. Kumari, A., & Gupta, R. (2013). Phenylalanine to leucine point mutation in oxyanion hole improved catalytic efficiency of Lip12 from Yarrowia lipolytica. Enzyme Micro Technol, 53, 386–390.

    Article  CAS  Google Scholar 

  34. Kamarudin, N. H. A., Rahman, R. N. Z. R. A., Ali, M. S. M., Thean, C. L., Saleh, A. B., & Basri, M. (2014). Unscrambling the effect of C-terminal tail deletion on the stability of a cold-adapted, organic solvent stable lipase from Staphylococcus epidermidis AT2. Molecular Biotechnology, 56, 747–757.

    Article  CAS  PubMed  Google Scholar 

  35. Quyen, D. T., Schmidt-Dannert, C., & Schmid, R. D. (2003). High-level expression of a lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase. Protein Expression and Purification, 28, 102–110.

    Article  CAS  PubMed  Google Scholar 

  36. Hosseini, M., Karkhane, A. A., Yakhchali, B., Shamsara, M., Aminzadeh, S., Morshedi, D., Haghbeen, K., Torktaz, I., Karimi, E., & Safari, Z. (2013). In silico and experimental characterization of chimeric Bacillus thermocatenulatus lipase with the complete conserved pentapeptide of Candida rugosa lipase. Applied Biochemistry and Biotechnology, 169, 773–785.

    Article  CAS  PubMed  Google Scholar 

  37. Rúa, M. L., Schmidt-Dannert, C., Wahl, S., Sprauer, A., & Schmid, R. D. (1997). Thermoalkalophilic lipase of Bacillus thermocatenulatus large-scale production, purification and properties: Aggregation behaviour and its effect on activity. Journal of Biotechnology, 56, 89–102.

    PubMed  Google Scholar 

  38. Sharma, P., Sharma, N., Pathania, S., & Handa, S. (2017). Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry. Journal, Genetic Engineering & Biotechnology, 15, 369–377.

    Article  Google Scholar 

  39. Leow, T. C., Rahman, R. N., Basri, M., & Salleh, A. B. (2007). A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles, 11, 527–535.

    Article  CAS  PubMed  Google Scholar 

  40. Latip, W., Rahman, R. N. Z. R. A., & Leow, T. C. (2018). The effect of N-terminal domain removal towards the biochemical and structural features of a thermotolerant lipase from an Antarctic Pseudomonas sp. strain AMS3. International Journal of Molecular Sciences, 19, 560–578.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maiangwa, J., Mohamad Ali, M. S., Salleh, A. B., Rahman, R. N. Z. R. A., Normi, Y. M., Mohd Shariff, F., & Leow, T. C. (2017). Lid opening and conformational stability of T1 lipase is mediated by increasing chain length polar solvents. PeerJ, 5, e3341.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Trodler, P., & Pleiss, J. (2008). Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Structural Biology, 8, 9–18.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fatima, S., Ajmal, R., Badr, G., & Khan, R. H. (2014). Harmful effect of detergents on lipase. Cell Biochemistry and Biophysics, 70, 759–763.

    Article  CAS  PubMed  Google Scholar 

  44. Secundo, F., Fiala, S., Fraaije, M. W., de Gonzalo, G., Meli, M., Zambianchi, F., & Ottolina, G. (2011). Effects of water miscible organic solvents on the activity and conformation of the Baeyer-Villiger monooxygenases from Thermobifida fusca and Acinetobacter calcoaceticus: A comparative study. Biotechnology and Bioengineering, 108, 491–499.

    Article  CAS  PubMed  Google Scholar 

  45. Balan, A., Ibrahim, D., Abdul Rahim, R., & Ahmad Rashid, F. A. (2012). Purification and characterization of a thermostable lipase from Geobacillus thermodenitrificans IBRL-nra. Enzyme Research, 2012, 987523.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Polizelli, P. P., Tiera, M. J., & Bonilla-Rodriguez, G. O. (2008). Effect of surfactants and polyethylene glycol on the activity and stability of a lipase from oilseeds of Pachira aquatica. Journal of the American Oil Chemists Society, 85, 749–753.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work on project number of 674 was supported by the National Institute of Genetic Engineering and Biotechnology (NIGEB).

Funding

This work was supported by the National Research Institute for Genetic Engineering and Biotechnology (NIGEB) (Grant Number 628).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conduct of the study and preparation of the article. All materials were created by AAK. In silico studies by AAK, SZ, and MA. All tests were conducted by SZ, MA, SA and AAK. Paper preparation by AAK.

Corresponding author

Correspondence to Ali Asghar Karkhane.

Ethics declarations

Competing interests

All authors confirm that they have no competing interests in the submission and publication of this article.

Ethical Approval

We declare that this study does not require a code of ethics as neither living organisms nor their products were used.

Consent to Participate

I confirm that verbal informed consent was obtained from each participant in the study.

Consent to Publish

All authors confirm that in this study all participants have given informed consent to the publication of all data in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkhane, A.A., Zargoosh, S., Aliakbari, M. et al. In Silico and Experimental Studies on the Effect of α3 and α5 Deletion on the Biochemical Properties of Bacillus thermocatenulatus Lipase. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00804-0

Keywords

Navigation