Skip to main content
Log in

A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In the field of medicine, it is axiomatic that the need of a precise gene-editing tool is critical to employ therapeutic approaches toward pathogenic mutations, occurring in human genome. Today we know that most of genetic defects are caused by single-base pair substitutions in genomic DNA. The ability to make practically any targeted substitutions of DNA sequences at specified regions in the human genome gives us the chance to employ gene therapy in most known diseases associated with genetic variants. In this regard, CRISPR/Cas9 applications is becoming more and more popular along with the significant advancements of life sciences, by employing this technology in genome-editing and high-throughput screenings. Several CRISPR/Cas-based mammalian cell gene-editing techniques have been developed during the last decade, including nucleases, base editors, and prime editors, all of which have the exact mechanism at first glance. However, they address a subset of known pathogenic sequence mutations using different methods. First, we highlight the development of CRISPR-based gene-editing tools. Then we describe their functions and summarize the conducted research studies, which are increasing the reliability of these strategies to better efficiencies for prospective gene therapies in the near future. Lastly, we compare the capabilities of all these platforms together besides their probable limitations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.

    Article  PubMed  Google Scholar 

  2. Gallagher, D. N., & Haber, J. E. (2018). Repair of a site-specific DNA cleavage: Old-school lessons for Cas9-mediated gene editing. ACS Chemical Biology, 13(2), 397–405.

    Article  CAS  PubMed  Google Scholar 

  3. Rouet, P., Smih, F., & Jasin, M. (1994). Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and Cellular Biology, 14(12), 8096–8106.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mao, Z., Bozzella, M., Seluanov, A., & Gorbunova, V. (2008). Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair, 7(10), 1765–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song, F., & Stieger, K. (2017). Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Molecular Therapy-Nucleic Acids, 7, 53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bollen, Y., Post, J., Koo, B. K., & Snippert, H. J. (2018). How to create state-of-the-art genetic model systems: Strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Research, 46(13), 6435–6454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Komor, A. C., Badran, A. H., & Liu, D. R. (2017). CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 168(1–2), 20–36.

    Article  CAS  PubMed  Google Scholar 

  9. Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M., Miyabe, A., Araki, M., & Hara, K. Y. (2016). Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 353(6305), aaf8729.

    Article  PubMed  Google Scholar 

  10. Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature, 551(7681), 464–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu, S., Bodai, Z., Cowan, Q. T., & Komor, A. C. (2021). Base editors: Expanding the types of DNA damage products harnessed for genome editing. Gene and Genome Editing, 1, 100005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., & Raguram, A. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: A review of the challenges and approaches. Drug Delivery, 25(1), 1234–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, D., Zhang, F., & Gao, G. (2020). CRISPR-based therapeutic genome editing: Strategies and in vivo delivery by AAV vectors. Cell, 181(1), 136–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naso, M. F., Tomkowicz, B., Perry, W. L., & Strohl, W. R. (2017). Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs, 31(4), 317–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thurtle-Schmidt, D. M. (2018). Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates. Biochemistry and Molecular Biology Education, 46(2), 195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2021). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207–221.

    Article  CAS  PubMed  Google Scholar 

  19. Li, Q., Qin, Z., Wang, Q., Xu, T., Yang, Y., & He, Z. (2019). Applications of genome editing technology in animal disease modeling and gene therapy. Computational and Structural Biotechnology Journal, 17, 689–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khan, S. H. (2019). Genome-editing technologies: Concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Molecular Therapy-Nucleic Acids, 16, 326–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aubert, M., Strongin, D. E., Roychoudhury, P., Loprieno, M. A., Haick, A. K., Klouser, L. M., Stensland, L., Huang, M.-L., Makhsous, N., & Tait, A. (2020). Gene editing and elimination of latent herpes simplex virus in vivo. Nature Communications, 11(1), 1–15.

    Article  Google Scholar 

  22. LaFountaine, J. S., Fathe, K., & Smyth, H. D. (2015). Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. International Journal of Pharmaceutics, 494(1), 180–194.

    Article  CAS  PubMed  Google Scholar 

  23. Benjamin, R., Berges, B. K., Solis-Leal, A., Igbinedion, O., Strong, C. L., & Schiller, M. R. (2016). TALEN gene editing takes aim on HIV. Human Genetics, 135(9), 1059–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anzalone, A. V., Koblan, L. W., & Liu, D. R. (2020). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 38(7), 824–844.

    Article  CAS  PubMed  Google Scholar 

  25. Janik, E., Niemcewicz, M., Ceremuga, M., Krzowski, L., Saluk-Bijak, J., & Bijak, M. (2020). Various aspects of a gene editing system—crispr–cas9. International Journal of Molecular Sciences, 21(24), 9604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khalil, A. M. (2020). The genome editing revolution. Journal of Genetic Engineering and Biotechnology, 18(1), 1–16.

    Article  Google Scholar 

  29. Wu, W. Y., Lebbink, J. H., Kanaar, R., Geijsen, N., & Van Der Oost, J. (2018). Genome editing by natural and engineered CRISPR-associated nucleases. Nature Chemical Biology, 14(7), 642–651.

    Article  CAS  PubMed  Google Scholar 

  30. Baghini, S. S., Gardanova, Z. R., Zekiy, A. O., Shomali, N., Tosan, F., & Jarahian, M. (2021). Optimizing sgRNA to improve CRISPR/Cas9 knockout efficiency: Special focus on human and animal cell. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2021.775309

    Article  Google Scholar 

  31. Uniyal, A. P., Mansotra, K., Yadav, S. K., & Kumar, V. (2019). An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants. 3Biotech, 9(6), 1–19.

    Google Scholar 

  32. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., & Joung, J. K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32(3), 279–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naeem, M., Majeed, S., Hoque, M. Z., & Ahmad, I. (2020). Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells, 9(7), 1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, P., Liang, S.-Q., Zheng, C., Mintzer, E., Zhao, Y. G., Ponnienselvan, K., Mir, A., Sontheimer, E. J., Gao, G., & Flotte, T. R. (2021). Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nature Communications, 12(1), 1–13.

    Google Scholar 

  35. Liu, R., Liang, L., Freed, E. F., & Gill, R. T. (2021). Directed evolution of CRISPR/Cas systems for precise gene editing. Trends in Biotechnology, 39(3), 262–273.

    Article  CAS  PubMed  Google Scholar 

  36. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., Van Der Oost, J., & Regev, A. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163(3), 759–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bandyopadhyay, A., Kancharla, N., Javalkote, V. S., Dasgupta, S., & Brutnell, T. P. (2020). CRISPR-Cas12a (Cpf1): A versatile tool in the plant genome editing tool box for agricultural advancement. Frontiers in Plant Science, 11, 1589.

    Article  Google Scholar 

  38. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., & Marraffini, L. A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., DeGennaro, E. M., Winblad, N., Choudhury, S. R., Abudayyeh, O. O., & Gootenberg, J. S. (2017). Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nature Biotechnology, 35(1), 31–34.

    Article  CAS  PubMed  Google Scholar 

  40. Berber, B., Aydin, C., Kocabas, F., Guney-Esken, G., Yilancioglu, K., Karadag-Alpaslan, M., Caliseki, M., Yuce, M., Demir, S., & Tastan, C. (2021). Gene editing and RNAi approaches for COVID-19 diagnostics and therapeutics. Gene Therapy, 28(6), 290–305.

    Article  CAS  PubMed  Google Scholar 

  41. Rautela, I., Uniyal, P., Thapliyal, P., Chauhan, N., Sinha, V. B., & Sharma, M. D. (2021). An extensive review to facilitate understanding of CRISPR technology as a gene editing possibility for enhanced therapeutic applications. Gene, 785, 145615.

    Article  CAS  PubMed  Google Scholar 

  42. Eid, A., Alshareef, S., & Mahfouz, M. M. (2018). CRISPR base editors: Genome editing without double-stranded breaks. Biochemical Journal, 475(11), 1955–1964.

    Article  CAS  PubMed  Google Scholar 

  43. Molla, K. A., & Yang, Y. (2019). CRISPR/Cas-mediated base editing: Technical considerations and practical applications. Trends in Biotechnology, 37(10), 1121–1142.

    Article  CAS  PubMed  Google Scholar 

  44. Porto, E. M., Komor, A. C., Slaymaker, I. M., & Yeo, G. W. (2020). Base editing: Advances and therapeutic opportunities. Nature Reviews Drug Discovery, 19(12), 839–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, J.-S. (2018). Precision genome engineering through adenine and cytosine base editing. Nature Plants, 4(3), 148–151.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, H.-X., Li, M., Lee, C. M., Chakraborty, S., Kim, H.-W., Bao, G., & Leong, K. W. (2017). CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chemical Reviews, 117(15), 9874–9906.

    Article  CAS  PubMed  Google Scholar 

  47. Evanoff, M., & Komor, A. C. (2019). Base editors: Modular tools for the introduction of point mutations in living cells. Emerging Topics in Life Sciences, 3(5), 483–491.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kantor, A., McClements, M. E., & MacLaren, R. E. (2020). CRISPR-Cas9 DNA base-editing and prime-editing. International Journal of Molecular Sciences, 21(17), 6240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hess, G. T., Tycko, J., Yao, D., & Bassik, M. C. (2017). Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Molecular Cell, 68(1), 26–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rees, H. A., & Liu, D. R. (2018). Base editing: Precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics, 19(12), 770–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.-L., Wang, D., & Gao, C. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 35(5), 438–440.

    Article  CAS  PubMed  Google Scholar 

  52. Li, J., Sun, Y., Du, J., Zhao, Y., & Xia, L. (2017). Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Molecular Plant, 10(3), 526–529.

    Article  CAS  PubMed  Google Scholar 

  53. Liang, P., Ding, C., Sun, H., Xie, X., Xu, Y., Zhang, X., Sun, Y., Xiong, Y., Ma, W., & Liu, Y. (2017). Correction of β-thalassemia mutant by base editor in human embryos. Protein & Cell, 8(11), 811–822.

    Article  CAS  Google Scholar 

  54. Koblan, L. W., Doman, J. L., Wilson, C., Levy, J. M., Tay, T., Newby, G. A., Maianti, J. P., Raguram, A., & Liu, D. R. (2018). Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 36(9), 843–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Musunuru, K., & Kathiresan, S. (2017). Is ANGPTL3 the next PCSK9? Nature Reviews Endocrinology, 13(9), 503–504.

    Article  CAS  PubMed  Google Scholar 

  56. Zeng, Y., Li, J., Li, G., Huang, S., Yu, W., Zhang, Y., Chen, D., Chen, J., Liu, J., & Huang, X. (2018). Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Molecular Therapy, 26(11), 2631–2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, X., Qian, X., Wang, B., Xia, Y., Zheng, Y., Du, L., Xu, D., Xing, D., DePinho, R. A., & Lu, Z. (2020). Programmable base editing of mutated TERT promoter inhibits brain tumour growth. Nature Cell Biology, 22(3), 282–288.

    Article  CAS  PubMed  Google Scholar 

  58. Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A. V., Raguram, A., & Doman, J. L. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38(5), 582–585.

    Article  CAS  PubMed  Google Scholar 

  59. Lin, X., Chen, H., Lu, Y.-Q., Hong, S., Hu, X., Gao, Y., Lai, L.-L., Li, J.-J., Wang, Z., & Ying, W. (2020). Base editing-mediated splicing correction therapy for spinal muscular atrophy. Cell Research, 30(6), 548–550.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Song, C.-Q., Jiang, T., Richter, M., Rhym, L. H., Koblan, L. W., Zafra, M. P., Schatoff, E. M., Doman, J. L., Cao, Y., & Dow, L. E. (2020). Adenine base editing in an adult mouse model of tyrosinaemia. Nature Biomedical Engineering, 4(1), 125–130.

    Article  CAS  PubMed  Google Scholar 

  61. Levy, J. M., Yeh, W.-H., Pendse, N., Davis, J. R., Hennessey, E., Butcher, R., Koblan, L. W., Comander, J., Liu, Q., & Liu, D. R. (2020). Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nature Biomedical Engineering, 4(1), 97–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gaudelli, N. M., Lam, D. K., Rees, H. A., Solá-Esteves, N. M., Barrera, L. A., Born, D. A., Edwards, A., Gehrke, J. M., Lee, S.-J., & Liquori, A. J. (2020). Directed evolution of adenine base editors with increased activity and therapeutic application. Nature Biotechnology, 38(7), 892–900.

    Article  CAS  PubMed  Google Scholar 

  63. Webber, B. R., Lonetree, C.-L., Kluesner, M. G., Johnson, M. J., Pomeroy, E. J., Diers, M. D., Lahr, W. S., Draper, G. M., Slipek, N. J., & Smeester, B. A. (2019). Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nature Communications, 10(1), 1–10.

    Google Scholar 

  64. Wu, F., Guo, T., Sun, L., Li, F., & Yang, X. (2022). Base editing of human pluripotent stem cells for modeling long QT syndrome. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-021-10324-6

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rosello, M., Serafini, M., Mignani, L., Finazzi, D., Giovannangeli, C., Mione, M. C., Concordet, J.-P., & Del Bene, F. (2022). Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nature Communications, 13(1), 1–13.

    Article  Google Scholar 

  66. Huang, S., Zhang, Z., Tao, W., Liu, Y., Li, X., Wang, X., Harati, J., Wang, P.-Y., Huang, X., & Lin, C.-P. (2022). Broadening prime editing toolkits using RNA-Pol-II-driven engineered pegRNA. Molecular Therapy, 30(9), 2923–2932.

    Article  CAS  PubMed  Google Scholar 

  67. Huang, X., Wang, Y., & Wang, N. (2022). Base editors for citrus gene editing. Frontiers in Genome Editing. https://doi.org/10.3389/fgeed.2022.852867

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R. J., & Joung, J. K. (2013). Efficient in vivo genome editing using RNA-guided nucleases. Nature Biotechnology. https://doi.org/10.1038/nbt.2501

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Landrum, M. J., Lee, J. M., Benson, M., Brown, G., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., & Hoover, J. (2016). ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Research, 44(D1), D862–D868.

    Article  CAS  PubMed  Google Scholar 

  71. Petri, K., Zhang, W., Ma, J., Schmidts, A., Lee, H., Horng, J. E., Kim, D. Y., Kurt, I. C., Clement, K., & Hsu, J. Y. (2022). CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nature Biotechnology, 40(2), 189–193.

    Article  CAS  PubMed  Google Scholar 

  72. Bosch, J. A., Birchak, G., & Perrimon, N. (2021). Precise genome engineering in Drosophila using prime editing. Proceedings of the National Academy of Sciences, 118(1), e2021996118.

    Article  CAS  Google Scholar 

  73. Liu, Y., Li, X., He, S., Huang, S., Li, C., Chen, Y., Liu, Z., Huang, X., & Wang, X. (2020). Efficient generation of mouse models with the prime editing system. Cell Discovery, 6(1), 1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sürün, D., Schneider, A., Mircetic, J., Neumann, K., Lansing, F., Paszkowski-Rogacz, M., Hänchen, V., Lee-Kirsch, M. A., & Buchholz, F. (2020). Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors. Genes, 11(5), 511.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schene, I. F., Joore, I. P., Oka, R., Mokry, M., van Vugt, A. H., van Boxtel, R., van der Doef, H. P., van der Laan, L. J., Verstegen, M., & van Hasselt, P. M. (2020). Prime editing for functional repair in patient-derived disease models. Nature Communications, 11(1), 1–8.

    Article  Google Scholar 

  76. Anzalone, A. V., Gao, X. D., Podracky, C. J., Nelson, A. T., Koblan, L. W., Raguram, A., Levy, J. M., Mercer, J. A., & Liu, D. R. (2022). Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nature Biotechnology, 40(5), 731–740.

    Article  CAS  PubMed  Google Scholar 

  77. Ferreira da Silva, J., Oliveira, G. P., Arasa-Verge, E. A., Kagiou, C., Moretton, A., Timelthaler, G., Jiricny, J., & Loizou, J. I. (2022). Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nature Communications, 13(1), 1–11.

    Article  Google Scholar 

  78. Trojan, J., Zeuzem, S., Randolph, A., Hemmerle, C., Brieger, A., Raedle, J., Plotz, G., Jiricny, J., & Marra, G. (2002). Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology, 122(1), 211–219.

    Article  CAS  PubMed  Google Scholar 

  79. Gupta, S., Gellert, M., & Yang, W. (2012). Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops. Nature Structural & Molecular Biology, 19(1), 72–78.

    Article  CAS  Google Scholar 

  80. Koeppel, J., Peets, E. M., Weller, J., Pallaseni, A., Liberante, F., & Parts, L. (2021). Predicting efficiency of writing short sequences into the genome using prime editing. bioRxiv. https://doi.org/10.1101/2021.11.10.468024

    Article  Google Scholar 

  81. Chen, P. J., Hussmann, J. A., Yan, J., Knipping, F., Ravisankar, P., Chen, P. F., Chen, C., Nelson, J. W., Newby, G. A., & Sahin, M. (2021). Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell, 184(22), 5635-5652.e5629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hsu, J. Y., Grünewald, J., Szalay, R., Shih, J., Anzalone, A. V., Lam, K. C., Shen, M. W., Petri, K., Liu, D. R., & Joung, J. K. (2021). PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nature Communications, 12(1), 1–6.

    Article  Google Scholar 

  83. Nelson, J. W., Randolph, P. B., Shen, S. P., Everette, K. A., Chen, P. J., Anzalone, A. V., An, M., Newby, G. A., Chen, J. C., & Hsu, A. (2022). Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology, 40(3), 402–410.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ASS, MR and MB: conceptualized the idea for the article and wrote the manuscript. FTZ: designed the figures. JF: supervised, and reviewed the final draft.

Corresponding author

Correspondence to Jafar Fallahi.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saber Sichani, A., Ranjbar, M., Baneshi, M. et al. A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing. Mol Biotechnol 65, 849–860 (2023). https://doi.org/10.1007/s12033-022-00639-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00639-1

Keywords

Navigation