Skip to main content
Log in

CRISPR in Modulating Antibiotic Resistance of ESKAPE Pathogens

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) isolates both from the clinical settings and food products are demonstrated to gain resistance to multiple antimicrobials. Therefore, the ESKAPE pathogens pose a serious threat to public health, which warrants specific attention to developing alternative novel therapeutics. The clustered regularly interspaced short palindromic repeats associated (CRISPR-Cas) system is one of the novel methods for managing antibiotic-resistant strains. Specific Cas nucleases can be programmed against bacterial genomic sequences to decrease bacterial resistance to antibiotics. Moreover, a few CRISPR-Cas nucleases have the ability to the sequence-specific killing of bacterial strains. However, some pathogens acquire antibiotic resistance due to the presence of the CRISPR-Cas system. In brief, there is a wide range of functional diversity of CRISPR-Cas systems in bacterial pathogens. Hence, to be an effective and safe infection treatment strategy, a comprehensive understanding of the role of CRISPR-Cas systems in modulating antibiotic resistance in ESKAPE pathogens is essential. The present review summarizes all the mechanisms by which CRISPR confers and prevents antibiotic resistance in ESKAPE. The review also emphasizes the relationship between CRISPR-Cas systems, biofilm formation, and antibiotic resistance in ESKAPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ma, Y. X., Wang, C. Y., Li, Y. Y., Li, J., Wan, Q. Q., Chen, J. H., Tay, F. R., & Niu, L. N. (2020). Considerations and caveats in combating ESKAPE pathogens against nosocomial infections. Advanced Science, 7(1), 1901872.

    Article  CAS  Google Scholar 

  2. De Oliveira, D. M., Forde, B. M., Kidd, T. J., Harris, P. N., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3), e00181-e219.

    Article  Google Scholar 

  3. The biggest antibiotic-resistant threats in the U.S. (2022, March 29). Centers for Disease Control and Prevention. Retrieved April 15, 2022, from https://www.cdc.gov/drugresistance/Biggest-Threats.html.

  4. Gholizadeh, P., Köse, Ş, Dao, S., Ganbarov, K., Tanomand, A., Dal, T., Aghazadeh, M., Ghotaslou, R., Rezaee, M. A., Yousefi, B., & Kafil, H. S. (2020). How CRISPR-Cas system could be used to combat antimicrobial resistance. Infection and Drug Resistance, 13, 1111–1121.

    Article  Google Scholar 

  5. World Health Organization. (2014). Antimicrobial resistance: Global report on surveillance. Geneva: World Health Organization.

    Google Scholar 

  6. Leonard, A. F., Morris, D., Schmitt, H., & Gaze, W. H. (2022). Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Current Opinion in Microbiology, 65, 40–46.

    Article  CAS  Google Scholar 

  7. Ayobami, O., Brinkwirth, S., Eckmanns, T., & Markwart, R. (2022). Antibiotic resistance in hospital-acquired ESKAPE-E infections in low-and lower-middle-income countries: a systematic review and meta-analysis. Emerging Microbes Infections. https://doi.org/10.1080/22221751.2022.2030196

    Article  Google Scholar 

  8. Zhen, X., Lundborg, C. S., Sun, X., Hu, X., & Dong, H. (2019). Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrobial Resistance and Infection Control. https://doi.org/10.1186/s13756-019-0590-7

    Article  Google Scholar 

  9. WHO publishes list of bacteria for which new antibiotics are urgently needed. (2017, February 27). World Health Organization. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed

  10. González de Aledo, M., González-Bardanca, M., Blasco, L., Pacios, O., Bleriot, I., Fernández-García, L., Fernández-Quejo, M., López, M., Bou, G., & Tomás, M. (2021). CRISPR-Cas, a revolution in the treatment and study of ESKAPE infections: Pre-clinical studies. Antibiotics, 10(7), 756.

    Article  Google Scholar 

  11. Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67–71.

    Article  CAS  Google Scholar 

  12. Ayoub Moubareck, C., & Hammoudi Halat, D. (2020). Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics, 9(3), 119.

    Article  Google Scholar 

  13. Culyba, M. J., Mo, C. Y., & Kohli, R. M. (2015). Targets for combating the evolution of acquired antibiotic resistance. Biochemistry, 54(23), 3573–3582.

    Article  CAS  Google Scholar 

  14. Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International. https://doi.org/10.1155/2016/2475067

    Article  Google Scholar 

  15. Patil, A., Banerji, R., Kanojiya, P., & Saroj, S. D. (2021). Foodborne ESKAPE biofilms and antimicrobial resistance: Lessons learned from clinical isolates. Pathogens and Global Health, 115(6), 339–356.

    Article  CAS  Google Scholar 

  16. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433.

    Article  CAS  Google Scholar 

  17. Makarova, K. S., Aravind, L., Wolf, Y. I., & Koonin, E. V. (2011). Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biology Direct, 6, 1–27.

    Article  Google Scholar 

  18. Liao, C., & Beisel, C. L. (2021). The tracrRNA in CRISPR biology and technologies. Annual Review of Genetics, 55, 161–181.

    Article  Google Scholar 

  19. Toro, N., Martínez-Abarca, F., & González-Delgado, A. (2017). The reverse transcriptases associated with CRISPR-Cas systems. Scientific Reports, 7(1), 1–7.

    Article  Google Scholar 

  20. Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67–78.

    Article  CAS  Google Scholar 

  21. Pickar-Oliver, A., & Gersbach, C. A. (2019). The next generation of CRISPR–Cas technologies and applications. Nature Reviews Molecular cell Biology, 20(8), 490–507.

    Article  CAS  Google Scholar 

  22. Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: A review of the challenges and approaches. Drug Delivery, 25(1), 1234–1257.

    Article  CAS  Google Scholar 

  23. Bharathkumar, N., Sunil, A., Meera, P., Aksah, S., Kannan, M., Saravanan, K. M., & Anand, T. (2021). CRISPR/Cas-based modifications for therapeutic applications: A review. Molecular Biotechnology, 64, 355–372.

    Article  Google Scholar 

  24. Agarwal, N., & Gupta, R. (2021). History, evolution and classification of CRISPR-Cas associated systems. Progress in Molecular Biology and Translational Science, 179, 11–76.

    Article  CAS  Google Scholar 

  25. Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S., & Sternberg, S. H. (2019). Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature, 571(7764), 219–225.

    Article  CAS  Google Scholar 

  26. Fagen, J. R., Collias, D., Singh, A. K., & Beisel, C. L. (2017). Advancing the design and delivery of CRISPR antimicrobials. Current Opinion in Biomedical Engineering, 4, 57–64.

    Article  Google Scholar 

  27. Cui, L., Wang, X., Huang, D., Zhao, Y., Feng, J., Lu, Q., Pu, Q., Wang, Y., Cheng, G., Wu, M., & Dai, M. (2020). CRISPR-cas3 of Salmonella upregulates bacterial biofilm formation and virulence to host cells by targeting quorum-sensing systems. Pathogens, 9(1), 53.

    Article  CAS  Google Scholar 

  28. Strich, J. R., & Chertow, D. S. (2019). CRISPR-Cas biology and its application to infectious diseases. Journal of Clinical Microbiology, 57(4), e01307-e1318.

    Article  CAS  Google Scholar 

  29. Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3), 233–239.

    Article  CAS  Google Scholar 

  30. Kim, J. S., Cho, D. H., Park, M., Chung, W. J., Shin, D., Ko, K. S., & Kweon, D. H. (2016). CRISPR/Cas9-mediated resensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. Journal of Microbiology and Biotechnology, 26(2), 394–401.

    Article  CAS  Google Scholar 

  31. de Maat, V., Stege, P. B., Dedden, M., Hamer, M., van Pijkeren, J. P., Willems, R. J., & van Schaik, W. (2019). CRISPR-Cas9-mediated genome editing in vancomycin-resistant Enterococcus faecium. FEMS Microbiology Letters, 366(22), fnz256.

    Article  Google Scholar 

  32. Xu, Z., Li, M., Li, Y., Cao, H., Miao, L., Xu, Z., Higuchi, Y., Yamasaki, S., Nishino, K., Woo, P. C. Y., Xiang, H., & Yan, A. (2019). Native CRISPR-Cas-mediated genome editing enables dissecting and sensitizing clinical multidrug-resistant P. aeruginosa. Cell Reports, 29(6), 1707-1717.e3.

    Article  CAS  Google Scholar 

  33. Kiga, K., Tan, X. E., Ibarra-Chávez, R., Watanabe, S., Aiba, Y., Sato’o, Y., Li, F. Y., Sasahara, T., Cui, B., Kawauchi, M., Boonsiri, T., Thitiananpakorn, K., Taki, Y., Azam, A. H., Suzuki, M., Penadés, J. R., & Cui, L. (2020). Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nature Communications, 11(1), 1–11.

    Article  Google Scholar 

  34. Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Srirama, K., Kanumuri, L., & Kodali, V. P. (2018). In silico sgRNA tool design for CRISPR control of quorum sensing in Acinetobacter species. Genes Diseases, 5(2), 123–129.

    Article  CAS  Google Scholar 

  35. Silveira, M. C., Rocha-De-Souza, C. M., Albano, R. M., De Oliveira Santos, I. C., & Carvalho-Assef, A. P. D. A. (2020). Exploring the success of Brazilian endemic clone Pseudomonas aeruginosa ST277 and its association with the CRISPR-Cas system type I-C. BMC Genomics, 21(1), 4–11.

    Article  Google Scholar 

  36. Spanjaard, B., Hu, B., Mitic, N., Olivares-Chauvet, P., Janjuha, S., Ninov, N., & Junker, J. P. (2018). Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars. Nature Biotechnology, 36(5), 469–473.

    Article  CAS  Google Scholar 

  37. Sheth, R. U., Yim, S. S., Wu, F. L., & Wang, H. H. (2017). Multiplex recording of cellular events over time on CRISPR biological tape. Science, 358(6369), 1457–1461.

    Article  CAS  Google Scholar 

  38. Shan, Y., Zhou, X., Huang, R., & Xing, D. (2019). High-fidelity and rapid quantification of miRNA combining crRNA programmability and CRISPR/Cas13a trans-cleavage activity. Analytical Chemistry, 91(8), 5278–5285.

    Article  CAS  Google Scholar 

  39. Li, Y., Li, S., Wang, J., & Liu, G. (2019). CRISPR/Cas systems towards next-generation biosensing. Trends in Biotechnology, 37(7), 730–743.

    Article  Google Scholar 

  40. Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G. W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., & Huang, B. (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7), 1479–1491.

    Article  CAS  Google Scholar 

  41. Hossain, M. A. (2021). CRISPR-Cas9: A fascinating journey from bacterial immune system to human gene editing. Progress in Molecular Biology and Translational Science, 178, 63–83.

    Article  Google Scholar 

  42. Price, V. J., Huo, W., Sharifi, A., & Palmer, K. L. (2016). Act additively against conjugative antibiotic resistance plasmid Transfer in Enterococcus faecalis. Molecular Biology and Physiology, 1(3), 1–13.

    Google Scholar 

  43. Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnology, 32(11), 1141–1145.

    Article  CAS  Google Scholar 

  44. Cady, K. C., White, A. S., Hammond, J. H., Abendroth, M. D., Karthikeyan, R. S. G., Lalitha, P., Zegans, M. E., & O’Toole, G. A. (2011). Prevalence, conservation and functional analysis of yersinia and escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates. Microbiology, 157(2), 430–437.

    Article  CAS  Google Scholar 

  45. Hullahalli, K., Rodrigues, M., Nguyen, U. T., & Palmer, K. (2018). An attenuated CRISPR-Cas system in Enterococcus faecalis permits DNA acquisition. MBio, 9(3), e00414-e418.

    Article  CAS  Google Scholar 

  46. Høyland-Kroghsbo, N. M., Paczkowski, J., Mukherjee, S., Broniewski, J., Westra, E., Bondy-Denomy, J., & Bassler, B. L. (2017). Quorum sensing controls the pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proceedings of the National Academy of Sciences of the United States of America, 114(1), 131–135.

    Article  Google Scholar 

  47. Beukers, A. G., Zaheer, R., Goji, N., Amoako, K. K., Chaves, A. V., Ward, M. P., & McAllister, T. A. (2017). Comparative genomics of Enterococcus spp. isolated from Bovine feces. BMC Microbiology, 17(1), 1–18.

    Article  Google Scholar 

  48. Gilmore, M. S., Lebreton, F., & van Schaik, W. (2013). Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Current Opinion in Microbiology, 16(1), 10–16.

    Article  Google Scholar 

  49. Mikalsen, T., Pedersen, T., Willems, R., Coque, T. M., Werner, G., Sadowy, E., van Schaik, W., Jensen, L. B., Sundsfjord, A., & Hegstad, K. (2015). Investigating the mobilome in clinically important lineages of enterococcus faecium and enterococcus faecalis. BMC Genomics, 16(1), 1–16.

    CAS  Google Scholar 

  50. Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L., & Duerkop, B. A. (2019). Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.01454-19

    Article  Google Scholar 

  51. Palmer, K. L., & Gilmore, M. S. (2010). Multidrug-resistant enterococci lack CRISPR-cas. MBio. https://doi.org/10.1128/mBio.00227-10

    Article  Google Scholar 

  52. Burley, K. M., & Sedgley, C. M. (2012). CRISPR-cas, a prokaryotic adaptive immune system, in endodontic, oral, and multidrug-resistant hospital-acquired Enterococcus faecalis. Journal of Endodontics, 38(11), 1511–1515.

    Article  Google Scholar 

  53. Hullahalli, K., Rodrigues, M., & Palmer, K. L. (2017). Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations. eLife, 6, 1–23.

    Article  Google Scholar 

  54. Biswas, B., Adhya, S., Washart, P., Paul, B., Trostel, A. N., Powell, B., Carlton, R., & Merril, C. R. (2002). Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infection and Immunity, 70(1), 204–210.

    Article  CAS  Google Scholar 

  55. Price, V. J., McBride, S. W., Hullahalli, K., Chatterjee, A., Duerkop, B. A., & Palmer, K. L. (2019). Enterococcus faecalis CRISPR-Cas is a robust barrier to conjugative antibiotic resistance dissemination in the murine intestine. MSphere, 4(4), 1–11.

    Article  Google Scholar 

  56. Zischka, M., Künne, C. T., Blom, J., Wobser, D., Sakinç, T., Schmidt-Hohagen, K., Dabrowski, P. W., Nitsche, A., Hübner, J., Hain, T., Chakraborty, T., Linke, B., Goesmann, A., Voget, S., Daniel, R., Schomburg, D., Hauck, R., Hafez, H. M., Tielen, P., … Werner, G. (2015). Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40. BMC Genomics, 16(1), 1–20.

    Article  CAS  Google Scholar 

  57. Qin, X., Galloway-Pẽa, J. R., Sillanpaa, J., Roh, J. H., Nallapareddy, S. R., Chowdhury, S., Bourgogne, A., Choudhury, T., Muzny, D. M., Buhay, C. J., Ding, Y., Dugan-Rocha, S., Liu, W., Kovar, C., Sodergren, E., Highlander, S., Petrosino, J. F., Worley, K. C., Gibbs, R. A., … Murray, B. E. (2012). Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiology, 12(1), 1.

    Article  Google Scholar 

  58. Sato’o, Y., Hisatsune, J., Yu, L., Sakuma, T., Yamamoto, T., & Sugai, M. (2018). Tailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference. PLoS ONE, 13(1), e0185987.

    Article  Google Scholar 

  59. Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A., & Marraffini, L. A. (2014). Exploiting CRISPR-cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology, 32(11), 1146–1150.

    Article  CAS  Google Scholar 

  60. Holt, D. C., Holden, M. T. G., Tong, S. Y. C., Castillo-Ramirez, S., Clarke, L., Quail, M. A., Currie, B. J., Parkhill, J., Bentley, S. D., Feil, E. J., & Giffard, P. M. (2011). A very early-branching staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin. Genome Biology and Evolution, 3(1), 881–895.

    Article  CAS  Google Scholar 

  61. Cobb, L. H., Park, J., Swanson, E. A., Beard, M. C., McCabe, E. M., Rourke, A. S., Seo, K. S., Olivier, A. K., & Priddy, L. B. (2019). CRISPR-Cas9 modified bacteriophage for treatment of Staphylococcus aureus induced osteomyelitis and soft tissue infection. PLoS ONE, 14(11), e0220421.

    Article  CAS  Google Scholar 

  62. Kang, Y. K., Kwon, K., Ryu, J. S., Lee, H. N., Park, C., & Chung, H. J. (2017). Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjugate Chemistry, 28(4), 957–967.

    Article  CAS  Google Scholar 

  63. Wang, K., & Nicholaou, M. (2017). Suppression of antimicrobial resistance in MRSA Using CRISPR-dCas9. American Society for Clinical Laboratory Science, 30(4), 207–213.

    Article  Google Scholar 

  64. Golding, G. R., Bryden, L., Levett, P. N., McDonald, R. R., Wong, A., Wylie, J., Graham, M. R., Tyler, S., van Domselaar, G., Simor, A. E., Gravel, D., & Mulvey, M. R. (2010). Livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 in humans Canada. Emerging Infectious Diseases, 16(4), 587–594.

    Article  CAS  Google Scholar 

  65. Zhou, Y., Tang, Y., Fu, P., Tian, D., Yu, L., Huang, Y., Li, G., Li, M., Wang, Y., Yang, Z., Xu, X., Yin, Z., Zhou, D., Poirel, L., & Jiang, X. (2020). The type I-E CRISPR-Cas system influences the acquisition of blaKPC-IncF plasmid in Klebsiella pneumonia. Emerging Microbes and Infections, 9(1), 1011–1022.

    Article  CAS  Google Scholar 

  66. Wang, G., Song, G., & Xu, Y. (2020). Association of crispr/cas system with the drug resistance in Klebsiella pneumoniae. Infection and Drug Resistance, 13, 1929–1935.

    Article  CAS  Google Scholar 

  67. Mackow, N. A., Shen, J., Adnan, M., Khan, A. S., Fries, B. C., & Diago-Navarro, E. (2019). CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae. PLoS ONE, 14(11), 1–13.

    Article  Google Scholar 

  68. Sun, Q., Wang, Y., Dong, N., Shen, L., Zhou, H., Hu, Y., Gu, D., Chen, S., Zhang, R., & Ji, Q. (2019). Application of CRISPR/Cas9-based genome editing in studying the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 63(7), 1–5.

    Article  Google Scholar 

  69. Lin, T. L., Pan, Y. J., Hsieh, P. F., Hsu, C. R., Wu, M. C., & Wang, J. T. (2016). Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae. Scientific Reports, 6, 1–10.

    Google Scholar 

  70. Shen, J., Zhou, J., Xu, Y., & Xiu, Z. (2020). Prophages contribute to genome plasticity of Klebsiella pneumoniae and may involve the chromosomal integration of ARGs in CG258. Genomics, 112(1), 998–1010.

    Article  CAS  Google Scholar 

  71. Huang, W., Wang, G., Sebra, R., Zhuge, J., Yin, C., Aguero-Rosenfeld, M. E., Schuetz, A. N., Dimitrova, N., & Fallon, J. T. (2017). Emergence and evolution of multidrug-resistant Klebsiella pneumoniae with both blaKPC and blaCTX-M integrated in the chromosome. Antimicrobial Agents and Chemotherapy, 61(7), e00076-e117.

    Article  CAS  Google Scholar 

  72. Mangas, E. L., Rubio, A., Álvarez-Marín, R., Labrador-Herrera, G., Pachón, J., Pachón-Ibáñez, M. E., & Pérez-Pulido, A. J. (2019). Pangenome of Acinetobacter baumannii uncovers two groups of genomes, one of them with genes involved in CRISPR/Cas defence systems associated with the absence of plasmids and exclusive genes for biofilm formation. Microbial Genomics. https://doi.org/10.1099/mgen.0.000309

    Article  Google Scholar 

  73. Wang, Y., Wang, Z., Chen, Y., Hua, X., Yu, Y., & Ji, Q. (2019). A Highly Efficient CRISPR-Cas9-based genome engineering platform in Acinetobacter baumannii to understand the H2O2-sensing mechanism of OxyR. Cell Chemical Biology, 26(12), 1732-1742.e5.

    Article  CAS  Google Scholar 

  74. Repizo, G. D., Espariz, M., Seravalle, J. L., Díaz Miloslavich, J. I., Steimbrüch, B. A., Shuman, H. A., & Viale, A. M. (2020). Acinetobacter baumannii NCIMB8209: A rare environmental strain displaying extensive insertion sequence-mediated genome remodeling resulting in the loss of exposed cell structures and defensive mechanisms. MSphere, 5(4), 1–21.

    Article  Google Scholar 

  75. Repizo, G. D., Viale, A. M., Borges, V., Cameranesi, M. M., Taib, N., Espariz, M., Brochier-Armanet, C., Gomes, J. P., & Salcedo, S. P. (2017). The environmental Acinetobacter baumannii isolate DSM30011 reveals clues into the preantibiotic era genome diversity, virulence potential, and niche range of a predominant nosocomial pathogen. Genome Biology and Evolution, 9(9), 2292–2307.

    Article  CAS  Google Scholar 

  76. Si-Tuan, N., Ngoc, H. M., Nhat, L. D., Nguyen, C., Pham, H. Q., & Huong, N. T. (2020). Genomic features, whole-genome phylogenetic and comparative genomic analysis of extreme-drug-resistant ventilator-associated-pneumonia Acinetobacter baumannii strain in a Vietnam hospital. Infection Genetics and Evolution, 80, 104178.

    Article  Google Scholar 

  77. Wang, H., Wang, J., Yu, P., Ge, P., Jiang, Y., Xu, R., Chen, R., & Liu, X. (2017). Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing. International Journal of Molecular Medicine, 39(2), 364–372.

    Article  CAS  Google Scholar 

  78. Petitjean, M., Martak, D., Silvant, A., Bertrand, X., Valot, B., & Hocquet, D. (2017). Genomic characterization of a local epidemic Pseudomonas aeruginosa reveals specific features of the widespread clone ST395. Microbial Genomics, 3(10), 1–10.

    Article  Google Scholar 

  79. Pawluk, A., Staals, R. H. J., Taylor, C., Watson, B. N. J., Saha, S., Fineran, P. C., Maxwell, K. L., & Davidson, A. R. (2016). Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nature Microbiology, 1(8), 1–6.

    Article  Google Scholar 

  80. van Belkum, A., Soriaga, L. B., LaFave, M. C., Akella, S., Veyrieras, J. B., Barbu, E. M., Shortridge, D., & Cady, K. C. (2015). Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio, 6(6), e01796-e1815.

    Google Scholar 

  81. Bondy-Denomy, J., Garcia, B., Strum, S., Du, M., Rollins, M. F., Hidalgo-Reyes, Y., Wiedenheft, B., Maxwell, K. L., & Davidson, A. R. (2015). Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature, 526(7571), 136–139.

    Article  CAS  Google Scholar 

  82. Landsberger, M., Gandon, S., Meaden, S., Rollie, C., Chevallereau, A., Chabas, H., Buckling, A., Westra, E. R., & van Houte, S. (2018). Anti-CRISPR phages cooperate to overcome CRISPR-Cas Immunity. Cell, 174(4), 908-916.e12.

    Article  CAS  Google Scholar 

  83. Li, R., Fang, L., Tan, S., Yu, M., Li, X., He, S., Wei, Y., Li, G., Jiang, J., & Wu, M. (2016). Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity. Cell Research, 26(12), 1273–1287.

    Article  CAS  Google Scholar 

  84. Tagliaferri, T. L., Guimarães, N. R., de Pereira, M. P. M., Vilela, L. F. F., Horz, H. P., dos Santos, S. G., & de Mendes, T. A. O. (2020). Exploring the potential of CRISPR-Cas9 under challenging conditions: facing high-copy plasmids and counteracting beta-lactam resistance in clinical strains of enterobacteriaceae. Frontiers in Microbiology, 11(April), 1–11.

    Google Scholar 

  85. Hao, M., He, Y., Zhang, H., Liao, X. P., Liu, Y. H., Sun, J., Du, H., Kreiswirth, B. N., & Chen, L. (2020). CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant enterobacteriaceae. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.00843-20

    Article  Google Scholar 

  86. Bikard, D., Euler, C., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A., & Marraffini, L. A. (2014). Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases. Nature Biotechnology, 32(11), 1146–1150.

    Article  CAS  Google Scholar 

  87. Li, Q., Xie, X., Yin, K., Tang, Y., Zhou, X., Chen, Y., Xia, J., Hu, Y., Ingmer, H., Li, Y., & Jiao, X. (2016). Characterization of CRISPR-Cas system in clinical Staphylococcus epidermidis strains revealed its potential association with bacterial infection sites. Microbiological Research, 193, 103–110.

    Article  CAS  Google Scholar 

  88. Kamruzzaman, M., & Iredell, J. R. (2020). CRISPR-Cas System in Antibiotic Resistance Plasmids in Klebsiella pneumoniae. Frontiers in Microbiology, 10, 2934.

    Article  Google Scholar 

  89. Grissa, I., Vergnaud, G., & Pourcel, C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research, 35(suppl 2), W52–W57.

    Article  Google Scholar 

  90. Shehreen, S., Chyou, T. Y., Fineran, P. C., & Brown, C. M. (2019). Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1772), 20180384.

    Article  CAS  Google Scholar 

  91. Mat Rahim, N., Lee, H., Strych, U., & AbuBakar, S. (2021). Facing the challenges of multidrug-resistant Acinetobacter baumannii: Progress and prospects in the vaccine development. Human Vaccines Immunotherapeutics, 17(10), 3784–3794.

    Article  CAS  Google Scholar 

  92. Wang, Y., Wang, Z., & Ji, Q. (2020). CRISPR-Cas9-based genome editing and cytidine base editing in Acinetobacter baumannii. STAR Protocols, 1(1), 100025.

    Article  Google Scholar 

  93. Mayer, C., Muras, A., Romero, M., López, M., Tomás, M., & Otero, A. (2018). Multiple quorum quenching enzymes are active in the nosocomial pathogen Acinetobacter baumannii ATCC17978. Frontiers in Cellular and Infection Microbiology. https://doi.org/10.3389/fcimb.2018.00310

    Article  Google Scholar 

  94. Cady, K. C., Bondy-Denomy, J., Heussler, G. E., Davidson, A. R., & O’Toole, G. A. (2012). The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. Journal of Bacteriology, 194(21), 5728–5738.

    Article  CAS  Google Scholar 

  95. Gholizadeh, P., Aghazadeh, M., Ghotaslou, R., Ahangarzadeh Rezaee, M., Pirzadeh, T., Köse, Ş, Ganbarov, K., Yousefi, M., & Kafil, H. S. (2020). CRISPR-cas system in the acquisition of virulence genes in dental-root canal and hospital-acquired isolates of Enterococcus faecalis. Virulence, 11(1), 1257–1267.

    Article  CAS  Google Scholar 

  96. Zhao, X., Yu, Z., & Xu, Z. (2018). Study the features of 57 confirmed CRISPR Loci in 38 strains of Staphylococcus aureus. Frontiers in Microbiology, 9(JUL), 1–14.

    Google Scholar 

  97. Liao, W., Liu, Y., Chen, C., Li, J., Du, F., Long, D., & Zhang, W. (2020). Distribution of CRISPR-Cas systems in clinical carbapenem-resistant Klebsiella pneumoniae strains in a Chinese tertiary hospital and its potential relationship with virulence. Microbial Drug Resistance, 26(6), 630–636.

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Department of Biotechnology, Ministry of Science and Technology, (Grant No.BT/RLF/Re-entry/41/2015), Erasmus + (Grant No.598515-EPP-1-2018-1-IN-EPPKA2-CBHE-JP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil D. Saroj.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, U., Gondi, R., Patil, A. et al. CRISPR in Modulating Antibiotic Resistance of ESKAPE Pathogens. Mol Biotechnol 65, 1–16 (2023). https://doi.org/10.1007/s12033-022-00543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00543-8

Keywords

Navigation