Skip to main content

Advertisement

Log in

Methods for CRISPR-Cas as Ribonucleoprotein Complex Delivery In Vivo

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The efficient delivery of CRISPR-Cas components is still a key and unsolved problem. CRISPR-Cas delivery in the form of a Cas protein+sgRNA (ribonucleoprotein complex, RNP complex), has proven to be extremely effective, since it allows to increase on-target activity, while reducing nonspecific activity. The key point for in vivo genome editing is the direct delivery of artificial nucleases and donor DNA molecules into the somatic cells of an adult organism. At the same time, control of the dose of artificial nucleases is impossible, which affects the efficiency of genome editing in the affected cells. Poor delivery efficiency and low editing efficacy reduce the overall potency of the in vivo genome editing process. Here we review how this problem is currently being solved in scientific works and what types of in vivo delivery methods of Cas9/sgRNA RNPs have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakatura, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987

    Article  CAS  Google Scholar 

  2. Jansen, R., Van Embden, J. D. A., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43(6), 1565–1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x

    Article  CAS  Google Scholar 

  3. Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J., & Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2), 174–182. https://doi.org/10.1007/s00239-004-0046-3

    Article  CAS  Google Scholar 

  4. McGinn, J., & Marraffini, L. A. (2019). Molecular mechanisms of CRISPR–Cas spacer acquisition. Nature Reviews Microbiology. https://doi.org/10.1038/s41579-018-0071-7

    Article  Google Scholar 

  5. Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1208507109

    Article  Google Scholar 

  6. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  Google Scholar 

  7. Heler, R., Samai, P., Modell, J. W., Weiner, C., Goldberg, G. W., Bikard, D., & Marraffini, L. A. (2015). Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature, 519(7542), 199–202. https://doi.org/10.1038/nature14245

    Article  CAS  Google Scholar 

  8. Barrangou, R., & Doudna, J. A. (2016). Applications of CRISPR technologies in research and beyond. Nature Biotechnology, 34(9), 933–941. https://doi.org/10.1038/nbt.3659

    Article  CAS  Google Scholar 

  9. Komor, A. C., Badran, A. H., & Liu, D. R. (2017). CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. https://doi.org/10.1016/j.cell.2016.10.044

    Article  Google Scholar 

  10. Gao, X., Tao, Y., Lamas, V., Huang, M., Yeh, W. H., Pan, B., Hu, Y. J., Hu, J. H., Thompson, D. B., Shu, Y., Li, Y., Wang, H., Yang, S., Xu, Q., Polley, D. B., Liberman, M. C., Kong, W. J., Holt, J. R., Chen, Z. Y., & Liu, D. R. (2018). Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature, 553(7687), 217–221. https://doi.org/10.1038/nature25164

    Article  CAS  Google Scholar 

  11. Park, C. Y., Kim, D. H., Son, J. S., Sung, J. J., Lee, J., Bae, S., Kim, J. H., Kim, D. W., & Kim, J. S. (2015). Functional correction of large factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell, 17(2), 213–220. https://doi.org/10.1016/j.stem.2015.07.001

    Article  CAS  Google Scholar 

  12. Liang, P., Xu, Y., Zhang, X., Ding, C., Huang, R., Zhang, Z., Lv, J., Xie, X., Chen, Y., Li, Y., Sun, Y., Bai, Y., Songyang, Z., Ma, W., Zhou, C., & Huang, J. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein and Cell, 6(5), 363–372. https://doi.org/10.1007/s13238-015-0153-5

    Article  CAS  Google Scholar 

  13. Xie, F., Ye, L., Chang, J. C., Beyer, A. I., Wang, J., Muench, M. O., & Kan, Y. W. (2014). Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Research, 24(9), 1526–1533. https://doi.org/10.1101/gr.173427.114

    Article  CAS  Google Scholar 

  14. Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P. A., Jacks, T., & Anderson, D. G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 32(6), 551–553. https://doi.org/10.1038/nbt.2884

    Article  CAS  Google Scholar 

  15. Genovese, P., Schiroli, G., Escobar, G., Di Tomaso, T., Firrito, C., Calabria, A., Moi, D., Mazzieri, R., Bonini, C., Holmes, M. C., Gregory, P. D., Van Der Burg, M., Gentner, B., Montini, E., Lombardo, A., & Naldini, L. (2014). Targeted genome editing in human repopulating haematopoietic stem cells. Nature, 510(7504), 235–240. https://doi.org/10.1038/nature13420

    Article  CAS  Google Scholar 

  16. Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., MacDonald, M. E., Stuhlmann, H., Koup, R. A., & Landau, N. R. (1996). Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 86(3), 367–377. https://doi.org/10.1016/S0092-8674(00)80110-5

    Article  CAS  Google Scholar 

  17. Long, C., Amoasii, L., Mireault, A. A., McAnally, J. R., Li, H., Sanchez-Ortiz, E., Bhattacharyya, S., Shelton, J. M., Bassel-Duby, R., & Olson, E. N. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 351(6271), 400–403. https://doi.org/10.1126/science.aad5725

    Article  CAS  Google Scholar 

  18. Nelson, C. E., Hakim, C. H., Ousterout, D. G., Thakore, P. I., Moreb, E. A., Castellanos Rivera, R. M., Madhavan, S., Pan, X., Ran, F. A., Yan, W. X., Asokan, A., Zhang, F., Duan, D., & Gersbach, C. A. (2016). In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 351(6271), 403–407. https://doi.org/10.1126/science.aad5143

    Article  CAS  Google Scholar 

  19. Tabebordbar, M., Zhu, K., Cheng, J. K. W., Chew, W. L., Widrick, J. J., Yan, W. X., Maesner, C., Wu, E. Y., Xiao, R., Ran, F. A., Cong, L., Zhang, F., Vandenberghe, L. H., Church, G. M., & Wagers, A. J. (2016). In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 351(6271), 407–411. https://doi.org/10.1126/science.aad5177

    Article  CAS  Google Scholar 

  20. Monteys, A. M., Ebanks, S. A., Keiser, M. S., & Davidson, B. L. (2017). CRISPR/cas9 editing of the mutant huntingtin allele in vitro and in vivo. Molecular Therapy, 25(1), 12–23. https://doi.org/10.1016/j.ymthe.2016.11.010

    Article  CAS  Google Scholar 

  21. Cox, D. B. T., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: Prospects and challenges. Nature Medicine. https://doi.org/10.1038/nm.3793

    Article  Google Scholar 

  22. Ghaemi, A., Bagheri, E., Abnous, K., Taghdisi, S. M., Ramezani, M., & Alibolandi, M. (2021). CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. Life Sciences, 267, 118969. https://doi.org/10.1016/J.LFS.2020.118969

    Article  CAS  Google Scholar 

  23. Martella, A., Firth, M., Taylor, B. J. M., Göppert, A., Cuomo, E. M., Roth, R. G., Dickson, A. J., & Fisher, D. I. (2019). Systematic evaluation of CRISPRa and CRISPRi modalities enables development of a multiplexed, orthogonal gene activation and repression system. ACS Synthetic Biology, 8(9), 1998–2006. https://doi.org/10.1021/acssynbio.8b00527

    Article  CAS  Google Scholar 

  24. Kampmann, M. (2018). CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chemical Biology, 13(2), 406–416. https://doi.org/10.1021/acschembio.7b00657

    Article  CAS  Google Scholar 

  25. Li, C., Brant, E., Budak, H., & Zhang, B. (2021). CRISPR/Cas: A Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University-Science B, 22(4), 253–284. https://doi.org/10.1631/JZUS.B2100009

    Article  CAS  Google Scholar 

  26. Shalaby, K., Aouida, M., & El-Agnaf, O. (2020). Tissue-specific delivery of crispr therapeutics: Strategies and mechanisms of non-viral vectors. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21197353

    Article  Google Scholar 

  27. Mendell, J. R., Al-Zaidy, S. A., Rodino-Klapac, L. R., Goodspeed, K., Gray, S. J., Kay, C. N., Boye, S. L., Boye, S. E., George, L. A., Salabarria, S., Corti, M., Byrne, B. J., & Tremblay, J. P. (2021). Current clinical applications of in vivo gene therapy with AAVs. Molecular Therapy. https://doi.org/10.1016/j.ymthe.2020.12.007

    Article  Google Scholar 

  28. Chuang, Y. F., Phipps, A. J., Lin, F. L., Hecht, V., Hewitt, A. W., Wang, P. Y., & Liu, G. S. (2021). Approach for in vivo delivery of CRISPR/Cas system: A recent update and future prospect. Cellular and Molecular Life Sciences. https://doi.org/10.1007/s00018-020-03725-2

    Article  Google Scholar 

  29. Ashmore-Harris, C., & Fruhwirth, G. O. (2020). The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clinical and Translational Medicine. https://doi.org/10.1186/s40169-020-0268-z

    Article  Google Scholar 

  30. Kunz, J. B., & Kulozik, A. E. (2020). Gene therapy of the hemoglobinopathies. HemaSphere, 4(5), e479. https://doi.org/10.1097/hs9.0000000000000479

    Article  Google Scholar 

  31. Luthra, R., Kaur, S., & Bhandari, K. (2021). Applications of CRISPR as a potential therapeutic. Life Sciences. https://doi.org/10.1016/J.LFS.2021.119908

    Article  Google Scholar 

  32. Kay, M. A. (2011). State-of-the-art gene-based therapies: The road ahead. Nature Reviews Genetics. https://doi.org/10.1038/nrg2971

    Article  Google Scholar 

  33. Li, H., Haurigot, V., Doyon, Y., Li, T., Wong, S. Y., Bhagwat, A. S., Malani, N., Anguela, X. M., Sharma, R., Ivanciu, L., Murphy, S. L., Finn, J. D., Khazi, F. R., Zhou, S., Paschon, D. E., Rebar, E. J., Bushman, F. D., Gregory, P. D., Holmes, M. C., & High, K. A. (2011). In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature, 475(7355), 217–221. https://doi.org/10.1038/nature10177

    Article  CAS  Google Scholar 

  34. Yin, H., Song, C. Q., Dorkin, J. R., Zhu, L. J., Li, Y., Wu, Q., Park, A., Yang, J., Suresh, S., Bizhanova, A., Gupta, A., Bolukbasi, M. F., Walsh, S., Bogorad, R. L., Gao, G., Weng, Z., Dong, Y., Koteliansky, V., Wolfe, S. A., … Anderson, D. G. (2016). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology, 34(3), 328–333. https://doi.org/10.1038/nbt.3471

    Article  CAS  Google Scholar 

  35. Cohen, J., Pertsemlidis, A., Kotowski, I. K., Graham, R., Garcia, C. K., & Hobbs, H. H. (2005). Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature Genetics, 37(2), 161–165. https://doi.org/10.1038/ng1509

    Article  CAS  Google Scholar 

  36. Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., & Zhang, F. (2013). Double nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity. Cell, 154(6), 1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

    Article  CAS  Google Scholar 

  37. Ding, Q., Strong, A., Patel, K. M., Ng, S. L., Gosis, B. S., Regan, S. N., Cowan, C. A., Rader, D. J., & Musunuru, K. (2014). Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circulation Research, 115(5), 488–492. https://doi.org/10.1161/CIRCRESAHA.115.304351

    Article  CAS  Google Scholar 

  38. Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J. S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24(6), 1012–1019. https://doi.org/10.1101/gr.171322.113

    Article  CAS  Google Scholar 

  39. Lin, S., Staahl, B. T., Alla, R. K., & Doudna, J. A. (2014). Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 3, e04766. https://doi.org/10.7554/eLife.04766

    Article  Google Scholar 

  40. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., & Joung, J. K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32(3), 279–284. https://doi.org/10.1038/nbt.2808

    Article  CAS  Google Scholar 

  41. Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S., & Kim, J. S. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 24(1), 132–141. https://doi.org/10.1101/gr.162339.113

    Article  CAS  Google Scholar 

  42. Liang, X., Potter, J., Kumar, S., Zou, Y., Quintanilla, R., Sridharan, M., Carte, J., Chen, W., Roark, N., Ranganathan, S., Ravinder, N., & Chesnut, J. D. (2015). Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of Biotechnology, 208, 44–53. https://doi.org/10.1016/j.jbiotec.2015.04.024

    Article  CAS  Google Scholar 

  43. Wang, M., Zuris, J. A., Meng, F., Rees, H., Sun, S., Deng, P., Han, Y., Gao, X., Pouli, D., Wu, Q., Georgakoudi, I., Liu, D. R., & Xu, Q. (2016). Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 113(11), 2868–2873. https://doi.org/10.1073/pnas.1520244113

    Article  CAS  Google Scholar 

  44. Farboud, B., Jarvis, E., Roth, T. L., Shin, J., Corn, J. E., Marson, A., Meyer, B. J., Patel, N. H., & Hochstrasser, M. L. (2018). Enhanced genome editing with cas9 ribonucleoprotein in diverse cells and organisms. Journal of Visualized Experiments. https://doi.org/10.3791/57350

    Article  Google Scholar 

  45. Jacków, J., Guo, Z., Hansen, C., Abaci, H. E., Doucet, Y. S., Shin, J. U., Hayashi, R., DeLorenzo, D., Kabata, Y., Shinkuma, S., Salas-Alanis, J. C., & Christiano, A. M. (2019). CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proceedings of the National Academy of Sciences of the United States of America, 116(52), 26846–26852. https://doi.org/10.1073/pnas.1907081116

    Article  CAS  Google Scholar 

  46. Zuris, J. A., Thompson, D. B., Shu, Y., Guilinger, J. P., Bessen, J. L., Hu, J. H., Maeder, M. L., Joung, J. K., Chen, Z. Y., & Liu, D. R. (2015). Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 33(1), 73–80. https://doi.org/10.1038/nbt.3081

    Article  CAS  Google Scholar 

  47. Paix, A., Folkmann, A., Rasoloson, D., & Seydoux, G. (2015). High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9ribonucleoprotein complexes. Genetics, 201(1), 47–54. https://doi.org/10.1534/genetics.115.179382

    Article  CAS  Google Scholar 

  48. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L., & Corn, J. E. (2016). Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature Biotechnology, 34(3), 339–344. https://doi.org/10.1038/nbt.3481

    Article  CAS  Google Scholar 

  49. Aida, T., Chiyo, K., Usami, T., Ishikubo, H., Imahashi, R., Wada, Y., Tanaka, K. F., Sakuma, T., Yamamoto, T., & Tanaka, K. (2015). Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biology. https://doi.org/10.1186/s13059-015-0653-x

    Article  Google Scholar 

  50. Kouranova, E., Forbes, K., Zhao, G., Warren, J., Bartels, A., Wu, Y., & Cui, X. (2016). CRISPRs for optimal targeting: Delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Human Gene Therapy, 27(6), 464–475. https://doi.org/10.1089/hum.2016.009

    Article  CAS  Google Scholar 

  51. Burger, A., Lindsay, H., Felker, A., Hess, C., Anders, C., Chiavacci, E., Zaugg, J., Weber, L. M., Catena, R., Jinek, M., Robinson, M. D., & Mosimann, C. (2016). Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development (Cambridge), 143(11), 2025–2037. https://doi.org/10.1242/dev.134809

    Article  CAS  Google Scholar 

  52. Sung, Y. H., Kim, J. M., Kim, H. T., Lee, J., Jeon, J., Jin, Y., Choi, J. H., Ban, Y. H., Ha, S. J., Kim, C. H., Lee, H. W., & Kim, J. S. (2014). Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Research, 24(1), 125–131. https://doi.org/10.1101/gr.163394.113

    Article  CAS  Google Scholar 

  53. Wang, W., Kutny, P. M., Byers, S. L., Longstaff, C. J., DaCosta, M. J., Pang, C., Zhang, Y., Taft, R. A., Buaas, F. W., & Wang, H. (2016). Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. Journal of Genetics and Genomics, 43(5), 319–327. https://doi.org/10.1016/j.jgg.2016.02.004

    Article  Google Scholar 

  54. Hashimoto, M., Yamashita, Y., & Takemoto, T. (2016). Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Developmental Biology, 418(1), 1–9. https://doi.org/10.1016/j.ydbio.2016.07.017

    Article  CAS  Google Scholar 

  55. Chen, S., Lee, B., Lee, A. Y. F., Modzelewski, A. J., & He, L. (2016). Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. Journal of Biological Chemistry, 291(28), 14457–14467. https://doi.org/10.1074/jbc.M116.733154

    Article  CAS  Google Scholar 

  56. Kalebic, N., Taverna, E., Tavano, S., Wong, F. K., Suchold, D., Winkler, S., Huttner, W. B., & Sarov, M. (2016). CRISPR /Cas9-induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo. EMBO Reports, 17(3), 338–348. https://doi.org/10.15252/embr.201541715

    Article  CAS  Google Scholar 

  57. Mangeot, P. E., Risson, V., Fusil, F., Marnef, A., Laurent, E., Blin, J., Mournetas, V., Massouridès, E., Sohier, T. J. M., Corbin, A., Aubé, F., Teixeira, M., Pinset, C., Schaeffer, L., Legube, G., Cosset, F. L., Verhoeyen, E., Ohlmann, T., & Ricci, E. P. (2019). Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nature Communications. https://doi.org/10.1038/s41467-018-07845-z

    Article  Google Scholar 

  58. Sun, W., Wang, J., Hu, Q., Zhou, X., Khademhosseini, A., & Gu, Z. (2020). CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Science Advances. https://doi.org/10.1126/sciadv.aba2983

    Article  Google Scholar 

  59. Wan, T., Chen, Y., Pan, Q., Xu, X., Kang, Y., Gao, X., Huang, F., Wu, C., & Ping, Y. (2020). Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. Journal of Controlled Release, 322, 236–247. https://doi.org/10.1016/j.jconrel.2020.03.015

    Article  CAS  Google Scholar 

  60. Deng, S., Li, X., Liu, S., Chen, J., Li, M., Chew, S. Y., Leong, K. W., & Cheng, D. (2020). Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects. Science Advances. https://doi.org/10.1126/sciadv.abb4005

    Article  Google Scholar 

  61. Azuma, H., Paulk, N., Ranade, A., Dorrell, C., Al-Dhalimy, M., Ellis, E., Strom, S., Kay, M. A., Finegold, M., & Grompe, M. (2007). Robust expansion of human hepatocytes in Fah-/-/Rag2 -/-/Il2rg-/- mice. Nature Biotechnology, 25(8), 903–910. https://doi.org/10.1038/nbt1326

    Article  CAS  Google Scholar 

  62. Pankowicz, F. P., Barzi, M., Legras, X., Hubert, L., Mi, T., Tomolonis, J. A., Ravishankar, M., Sun, Q., Yang, D., Borowiak, M., Sumazin, P., Elsea, S. H., Bissig-Choisat, B., & Bissig, K. D. (2016). Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nature Communications, 7(1), 1–6. https://doi.org/10.1038/ncomms12642

    Article  CAS  Google Scholar 

  63. Sun, W., Ji, W., Hall, J. M., Hu, Q., Wang, C., Beisel, C. L., & Gu, Z. (2015). Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angewandte Chemie International Edition, 54(41), 12029–12033. https://doi.org/10.1002/anie.201506030

    Article  CAS  Google Scholar 

  64. Sun, W., Jiang, T., Lu, Y., Reiff, M., Mo, R., & Gu, Z. (2014). Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. Journal of the American Chemical Society, 136(42), 14722–14725. https://doi.org/10.1021/ja5088024

    Article  CAS  Google Scholar 

  65. Kim, Y.-K., Choi, J. Y., Jiang, H.-L., Arote, R., Jere, D., Cho, M.-H., Je, Y. H., & Cho, C.-S. (2009). Hybrid of baculovirus and galactosylated PEI for efficient gene carrier. Virology, 387(1), 89–97. https://doi.org/10.1016/j.virol.2009.02.001

    Article  CAS  Google Scholar 

  66. Zhou, Z., Shen, Y., Tang, J., Jin, E., Ma, X., Sun, Q., Zhang, B., Van Kirk, E. A., & Murdoch, W. J. (2011). Linear polyethyleneimine-based charge-reversal nanoparticles for nuclear-targeted drug delivery. Journal of Materials Chemistry, 21(47), 19114–19123. https://doi.org/10.1039/c1jm13576g

    Article  CAS  Google Scholar 

  67. Wei, Y., Gong, J., Thimmulappa, R. K., Kosmider, B., Biswal, S., & Duh, E. J. (2013). Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Proceedings of the National Academy of Sciences of the United States of America, 110(41), E3910. https://doi.org/10.1073/pnas.1309276110

    Article  Google Scholar 

  68. Denicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K. H., Yeo, C. J., Calhoun, E. S., Scrimieri, F., Winter, J. M., Hruban, R. H., Iacobuzio-Donahue, C., Kern, S. E., Blair, I. A., & Tuveson, D. A. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475(7354), 106–110. https://doi.org/10.1038/nature10189

    Article  CAS  Google Scholar 

  69. Zhou, G., Xu, Y., Chen, M., Cheng, D., & Shuai, X. (2016). Tumor-penetrating peptide modified and pH-sensitive polyplexes for tumor targeted siRNA delivery. Polymer Chemistry, 7(23), 3857–3863. https://doi.org/10.1039/c6py00427j

    Article  CAS  Google Scholar 

  70. Pan, Y., Yang, J., Luan, X., Liu, X., Li, X., Yang, J., Huang, T., Sun, L., Wang, Y., Lin, Y., & Song, Y. (2019). Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform. Science Advances, 5(4), 7199. https://doi.org/10.1126/sciadv.aav7199

    Article  CAS  Google Scholar 

  71. Guevara, M. L., Persano, F., & Persano, S. (2020). Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Frontiers in Chemistry. https://doi.org/10.3389/fchem.2020.589959

    Article  Google Scholar 

  72. Tapeinos, C., Battaglini, M., & Ciofani, G. (2017). Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2017.08.033

    Article  Google Scholar 

  73. Barriga, H. M. G., Holme, M. N., & Stevens, M. M. (2019). Cubosomes: The next generation of smart lipid nanoparticles? Angewandte Chemie International Edition. https://doi.org/10.1002/anie.201804067

    Article  Google Scholar 

  74. Shankar, R., Joshi, M., & Pathak, K. (2018). Lipid nanoparticles: A novel approach for brain targeting. Pharmaceutical Nanotechnology, 6(2), 81–93. https://doi.org/10.2174/2211738506666180611100416

    Article  CAS  Google Scholar 

  75. Cunha, S., Amaral, M. H., Sousa Lobo, J. M., & Silva, A. C. (2017). Lipid nanoparticles for nasal/intranasal drug delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 34(3), 257–282. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2017018693

    Article  CAS  Google Scholar 

  76. Rajpoot, K. (2019). Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Current Pharmaceutical Design, 25(37), 3943–3959. https://doi.org/10.2174/1381612825666190903155321

    Article  CAS  Google Scholar 

  77. Samaridou, E., Heyes, J., & Lutwyche, P. (2020). Lipid nanoparticles for nucleic acid delivery: Current perspectives. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2020.06.002

    Article  Google Scholar 

  78. ScioliMontoto, S., Muraca, G., & Ruiz, M. E. (2020). Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2020.587997

    Article  Google Scholar 

  79. Alavi, M., & Hamidi, M. (2019). Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metabolism and Personalized Therapy. https://doi.org/10.1515/dmpt-2018-0032

    Article  Google Scholar 

  80. Fan, Y., Marioli, M., & Zhang, K. (2021). Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. Journal of Pharmaceutical and Biomedical Analysis. https://doi.org/10.1016/j.jpba.2020.113642

    Article  Google Scholar 

  81. Chen, Z., Liu, F., Chen, Y., Liu, J. J., Wang, X., Chen, A. T., Deng, G., Zhang, H., Liu, J. J., Hong, Z., & Zhou, J. (2017). Targeted delivery of CRISPR/Cas9-mediated cancer gene therapy via liposome-templated hydrogel nanoparticles. Advanced Functional Materials, 27(46), 1703036. https://doi.org/10.1002/adfm.201703036

    Article  CAS  Google Scholar 

  82. Cho, E. Y., Ryu, J. Y., Lee, H. A. R., Hong, S. H., Park, H. S., Hong, K. S., Park, S. G., Kim, H. P., & Yoon, T. J. (2019). Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. Journal of Nanobiotechnology. https://doi.org/10.1186/s12951-019-0452-8

    Article  Google Scholar 

  83. Wei, T., Cheng, Q., Min, Y. L., Olson, E. N., & Siegwart, D. J. (2020). Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-17029-3

    Article  CAS  Google Scholar 

  84. Sugahara, K. N., Teesalu, T., Prakash Karmali, P., Ramana Kotamraju, V., Agemy, L., Greenwald, D. R., & Ruoslahti, E. (2010). Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 328(5981), 1031–1035. https://doi.org/10.1126/science.1183057

    Article  CAS  Google Scholar 

  85. Gillmore, J. D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M. L., Seitzer, J., O’Connell, D., Walsh, K. R., Wood, K., Phillips, J., Xu, Y., Amaral, A., Boyd, A. P., Cehelsky, J. E., McKee, M. D., Schiermeier, A., Harari, O., Murphy, A.,…Lebwohl, D. (2021). CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. New England Journal of Medicine, 385(6), 493–502. https://doi.org/10.1056/NEJMOA2107454

    Article  CAS  Google Scholar 

  86. Gee, P., Lung, M. S. Y., Okuzaki, Y., Sasakawa, N., Iguchi, T., Makita, Y., Hozumi, H., Miura, Y., Yang, L. F., Iwasaki, M., Wang, X. H., Waller, M. A., Shirai, N., Abe, Y. O., Fujita, Y., Watanabe, K., Kagita, A., Iwabuchi, K. A., Yasuda, M.,…Hotta, A. (2020). Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nature Communications. https://doi.org/10.1038/s41467-020-14957-y

    Article  Google Scholar 

  87. Rui, Y., Wilson, D. R., Choi, J., Varanasi, M., Sanders, K., Karlsson, J., Lim, M., & Green, J. J. (2019). Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Science Advances. https://doi.org/10.1126/sciadv.aay3255

    Article  Google Scholar 

  88. Zhou, W., Cui, H., Ying, L., & Yu, X. F. (2018). Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing. Angewandte Chemie International Edition, 57(32), 10268–10272. https://doi.org/10.1002/anie.201806941

    Article  CAS  Google Scholar 

  89. Montagna, C., Petris, G., Casini, A., Maule, G., Franceschini, G. M., Zanella, I., Conti, L., Arnoldi, F., Burrone, O. R., Zentilin, L., Zacchigna, S., Giacca, M., & Cereseto, A. (2018). VSV-G-enveloped vesicles for traceless delivery of CRISPR-Cas9. Molecular Therapy Nucleic Acids, 12, 453–462. https://doi.org/10.1016/j.omtn.2018.05.010

    Article  CAS  Google Scholar 

  90. Lee, K., Conboy, M., Park, H. M., Jiang, F., Kim, H. J., Dewitt, M. A., Mackley, V. A., Chang, K., Rao, A., Skinner, C., Shobha, T., Mehdipour, M., Liu, H., Huang, W. C., Lan, F., Bray, N. L., Li, S., Corn, J. E., Kataoka, K.,…Murthy, N. (2017). Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature Biomedical Engineering, 1(11), 889–901. https://doi.org/10.1038/s41551-017-0137-2

    Article  CAS  Google Scholar 

  91. Chen, F., Alphonse, M., & Liu, Q. (2020). Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. https://doi.org/10.1002/wnan.1609

    Article  Google Scholar 

  92. Schmidt, F., & Grimm, D. (2015). CRISPR genome engineering and viral gene delivery: A case of mutual attraction. Biotechnology Journal. https://doi.org/10.1002/biot.201400529

    Article  Google Scholar 

  93. Chamberlain, K., Riyad, J. M., & Weber, T. (2016). Expressing transgenes that exceed the packaging capacity of adeno-associated virus capsids. Human Gene Therapy Methods. https://doi.org/10.1089/hgtb.2015.140

    Article  Google Scholar 

  94. Ramamoorth, M., & Narvekar, A. (2015). Non viral vectors in gene therapy—an overview. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2015/10443.5394

    Article  Google Scholar 

  95. Li, L., Wei, Y., & Gong, C. (2015). Polymeric nanocarriers for non-viral gene delivery. Journal of Biomedical Nanotechnology. https://doi.org/10.1166/jbn.2015.2069

    Article  Google Scholar 

  96. Jones, M. R., Seeman, N. C., & Mirkin, C. A. (2015). Programmable materials and the nature of the DNA bond. Science, 347(6224), 1260901–1260901. https://doi.org/10.1126/science.1260901

    Article  CAS  Google Scholar 

  97. Macfarlane, R. J., Thaner, R. V., Brown, K. A., Zhang, J., Lee, B., Nguyen, S. B. T., & Mirkin, C. A. (2014). Importance of the DNA “bond” in programmable nanoparticle crystallization. Proceedings of the National Academy of Sciences of the United States of America, 111(42), 14995–15000. https://doi.org/10.1073/pnas.1416489111

    Article  CAS  Google Scholar 

  98. Hu, R., Zhang, X., Zhao, Z., Zhu, G., Chen, T., Fu, T., & Tan, W. (2014). DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angewandte Chemie, 126(23), 5931–5936. https://doi.org/10.1002/ange.201400323

    Article  Google Scholar 

  99. Kim, H. J., Ishii, A., Miyata, K., Lee, Y., Wu, S., Oba, M., Nishiyama, N., & Kataoka, K. (2010). Introduction of stearoyl moieties into a biocompatible cationic polyaspartamide derivative, PAsp(DET), with endosomal escaping function for enhanced siRNA-mediated gene knockdown. Journal of Controlled Release, 145(2), 141–148. https://doi.org/10.1016/j.jconrel.2010.03.019

    Article  CAS  Google Scholar 

  100. Miyata, K., Oba, M., Nakanishi, M., Fukushima, S., Yamasaki, Y., Koyama, H., Nishiyama, N., & Kataoka, K. (2008). Polyplexes from poly(aspartamide) bearing 1,2-diaminoethane side chains induce pH-selective, endosomal membrane destabilization with amplified transfection and negligible cytotoxicity. Journal of the American Chemical Society, 130(48), 16287–16294. https://doi.org/10.1021/ja804561g

    Article  CAS  Google Scholar 

  101. Ding, Y., Jiang, Z., Saha, K., Kim, C. S., Kim, S. T., Landis, R. F., & Rotello, V. M. (2014). Gold nanoparticles for nucleic acid delivery. Molecular Therapy. https://doi.org/10.1038/mt.2014.30

    Article  Google Scholar 

  102. Campbell, L. A., Coke, L. M., Richie, C. T., Fortuno, L. V., Park, A. Y., & Harvey, B. K. (2019). Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus. Molecular Therapy, 27(1), 151–163. https://doi.org/10.1016/j.ymthe.2018.10.002

    Article  CAS  Google Scholar 

  103. Rui, Y., Wilson, D. R., Sanders, K., & Green, J. J. (2019). Reducible branched ester-amine quadpolymers (rBEAQs) codelivering plasmid DNA and RNA oligonucleotides enable CRISPR/Cas9 genome editing. ACS Applied Materials and Interfaces, 11(11), 10472–10480. https://doi.org/10.1021/acsami.8b20206

    Article  CAS  Google Scholar 

  104. Wilson, D. R., Rui, Y., Siddiq, K., Routkevitch, D., & Green, J. J. (2019). Differentially branched ester amine quadpolymers with amphiphilic and pH-sensitive properties for efficient plasmid DNA delivery. Molecular Pharmaceutics, 16(2), 655–668. https://doi.org/10.1021/acs.molpharmaceut.8b00963

    Article  CAS  Google Scholar 

  105. Gao, Y., Huang, J.-Y., O’Keeffe Ahern, J., Cutlar, L., Zhou, D., Lin, F.-H., & Wang, W. (2016). Highly branched poly(β-amino esters) for non-viral gene delivery: High transfection efficiency and low toxicity achieved by increasing molecular weight. Biomacromolecules, 17(11), 3640–3647. https://doi.org/10.1021/acs.biomac.6b01120

    Article  CAS  Google Scholar 

  106. Armeanu, S., Pelisek, J., Krausz, E., Fuchs, A., Groth, D., Curth, R., Keil, O., Quilici, J., Rolland, P. H., Reszka, R., & Nikol, S. (2000). Optimization of nonviral gene transfer of vascular smooth muscle cells in vitro and in vivo. Molecular Therapy, 1(4), 366–375. https://doi.org/10.1006/mthe.2000.0053

    Article  CAS  Google Scholar 

  107. Dokka, S., Toledo, D., Shi, X., Castranova, V., & Rojanasakul, Y. (2000). Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharmaceutical Research, 17(5), 521–525. https://doi.org/10.1023/A:1007504613351

    Article  CAS  Google Scholar 

  108. Kim, K. K. E., Park, S. W., Kim, J. S. J. H. J. H., Lee, S. H., Kim, D., Koo, T., Kim, K. K. E., Kim, J. S. J. H. J. H., & Kim, J. S. J. H. J. H. (2017). Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Research, 27(3), 419–426. https://doi.org/10.1101/gr.219089.116

    Article  CAS  Google Scholar 

  109. Noureddine, A., Maestas-Olguin, A., Saada, E. A., LaBauve, A. E., Agola, J. O., Baty, K. E., Howard, T., Sabo, J. K., Espinoza, C. R. S., Doudna, J. A., Schoeniger, J. S., Butler, K. S., Negrete, O. A., Brinker, C. J., & Serda, R. E. (2020). Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery. Acta Biomaterialia, 114, 358–368. https://doi.org/10.1016/j.actbio.2020.07.027

    Article  CAS  Google Scholar 

  110. Alton, E. W., Boyd, A. C., Porteous, D. J., Davies, G., Davies, J. C., Griesenbach, U., Higgins, T. E., Gill, D. R., Hyde, S. C., Innes, J. A., UK Cystic Fibrosis Gene Therapy Consortium. (2015). A phase I/IIa safety and efficacy study of nebulized liposome-mediated gene therapy for cystic fibrosis supports a multidose trial. American Journal of Respiratory and Critical Care Medicine. https://doi.org/10.1164/rccm.201506-1193LE

    Article  Google Scholar 

  111. Zheng, P. P., Kros, J. M., & Li, J. (2018). Approved CAR T cell therapies: Ice bucket challenges on glaring safety risks and long-term impacts. Drug Discovery Today. https://doi.org/10.1016/j.drudis.2018.02.012

    Article  Google Scholar 

  112. Shahryari, A., Jazi, M. S., Mohammadi, S., Nikoo, H. R., Nazari, Z., Hosseini, E. S., Burtscher, I., Mowla, S. J., & Lickert, H. (2019). Development and clinical translation of approved gene therapy products for genetic disorders. Frontiers in Genetics. https://doi.org/10.3389/fgene.2019.00868

    Article  Google Scholar 

  113. Tuszynski, M. H. (2002). Growth-factor gene therapy for neurodegenerative disorders. The Lancet Neurology. https://doi.org/10.1016/S1474-4422(02)00006-6

    Article  Google Scholar 

  114. Dickler, H. B., & Collier, E. (1994). Gene therapy in the treatment of disease. The Journal of Allergy and Clinical Immunology, 94(6 PART 1), 942–951. https://doi.org/10.1016/0091-6749(94)90111-2

    Article  CAS  Google Scholar 

  115. Anderson, W. F. (1992). Human gene therapy. Science. https://doi.org/10.1126/science.1589762

    Article  Google Scholar 

  116. Staahl, B. T., Benekareddy, M., Coulon-Bainier, C., Banfal, A. A., Floor, S. N., Sabo, J. K., Urnes, C., Munares, G. A., Ghosh, A., & Doudna, J. A. (2017). Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nature Biotechnology, 35(5), 431–434. https://doi.org/10.1038/nbt.3806

    Article  CAS  Google Scholar 

  117. Park, Y. J., Chang, L., Liang, J. F., Moon, C., Chung, C., & Yang, V. C. (2005). Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: In vitro and in vivo study. The FASEB Journal, 19(11), 1555–1557. https://doi.org/10.1096/fj.04-2322fje

    Article  CAS  Google Scholar 

  118. Kim, S. M., Shin, S. C., Kim, E. E., Kim, S. H., Park, K., Oh, S. J., & Jang, M. (2018). Simple in vivo gene editing via direct self-assembly of Cas9 ribonucleoprotein complexes for cancer treatment. ACS Nano, 12(8), 7750–7760. https://doi.org/10.1021/acsnano.8b01670

    Article  CAS  Google Scholar 

  119. Wu, W., Lu, Z., Li, F., Wang, W., Qian, N., Duan, J., Zhang, Y., Wang, F., & Chen, T. (2017). Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proceedings of the National Academy of Sciences of the United States of America, 114(7), 1660–1665. https://doi.org/10.1073/pnas.1614775114

    Article  CAS  Google Scholar 

  120. Wu, W., & Chen, T. (2019). Ribonucleoproteins mediated efficient in vivo gene editing in skin stem cells. Methods in molecular biology (Vol. 1879, pp. 75–86). New York: Humana Press Inc. https://doi.org/10.1007/7651_2018_115

    Chapter  Google Scholar 

  121. Li, L., Hu, S., & Chen, X. (2018). Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials. https://doi.org/10.1016/j.biomaterials.2018.04.031

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation for Research Centre for Medical Genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alesya G. Bykonya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykonya, A.G., Lavrov, A.V. & Smirnikhina, S.A. Methods for CRISPR-Cas as Ribonucleoprotein Complex Delivery In Vivo. Mol Biotechnol 65, 181–195 (2023). https://doi.org/10.1007/s12033-022-00479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00479-z

Keywords

Navigation