Skip to main content
Log in

Long Non-coding RNA ZFPM2-AS1: A Novel Biomarker in the Pathogenesis of Human Cancers

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Due to their biological activities in regulating dosage compensation, epigenetics, and cell differentiation, long non-coding RNAs (lncRNA) have been recognized as important regulators of the beginning and development of human malignancies. LncRNA dysregulation has a significant impact on a range of cellular functions, including proliferation, migration, invasion, and anti-apoptosis activity. Recently, aberrant expression of the long non-coding RNA zinc finger protein multitype 2 antisense RNA 1 (ZFPM2-AS1) was observed in a range of solid tumors and correlated significantly with tumor size, histological differentiation, lymph node metastasis, malignant tumor (TNM) stage, short survival, and prognosis. Additional mechanical analysis indicated that ZFPM2-AS1 was involved in several cellular activities, including proliferation, migration, invasion, cell cycle progression, and apoptosis, through microRNAs (miRNAs), signaling pathways, and other biological components or proteins. This review summarizes the current status of research on ZFPM2-AS1 in various human malignancies and discusses its mechanism of action and clinical significance in tumor development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

ceRNA:

Competitive endogenous RNA

CRC:

Colorectal cancer

ESCC:

Esophageal squamous cell carcinoma

GC:

Gastric cancer

GEO:

Gene expression omnibus

GEPIA:

Gene expression profile interactive analysis

GSEA:

Gene set enrichment analysis

HCC:

Hepatocellular carcinoma

LAUD:

Lung adenocarcinoma

lncRNA:

Long non-coding RNA

miRNA:

Micro RNA

MMM:

Malignant melanoma

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

RB:

Retinoblastoma

SCLC:

Small cell lung cancer

TC:

Thyroid cancer

TCGA:

The cancer genome atlas

ZFPM2-AS1:

Zinc finger protein multitype 2 antisense RNA 1

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.

    Google Scholar 

  2. Domingo, J. B., Chen, J. J., & Braun, K. L. (2018). Colorectal cancer screening compliance among Asian and Pacific Islander Americans. Journal of Immigrant and Minority Health, 20(3), 584–593.

    Article  PubMed  Google Scholar 

  3. Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S., & Baradaran, B. (2017). The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin, 7(3), 339–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo, T., Li, J., Zhang, L., Hou, W., Wang, R., Zhang, J., & Gao, P. (2019). Multidimensional communication of microRNAs and long non-coding RNAs in lung cancer. Journal of Cancer Research and Clinical Oncology, 145(1), 31–48.

    Article  CAS  PubMed  Google Scholar 

  5. Harrow, J., Frankish, A., Gonzalez, J. M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B. L., Barrell, D., Zadissa, A., Searle, S., et al. (2012). GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research, 22(9), 1760–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., et al. (2012). Landscape of transcription in human cells. Nature, 489(7414), 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gardini, A., & Shiekhattar, R. (2015). The many faces of long non-coding RNAs. FEBS Journal, 282(9), 1647–1657.

    Article  CAS  PubMed  Google Scholar 

  8. Lopez-Pajares, V. (2016). Long non-coding RNA regulation of gene expression during differentiation. European Journal of Physiology, 468(6), 971–981.

    Article  CAS  PubMed  Google Scholar 

  9. Blythe, A. J., Fox, A. H., & Bond CS. (2016). The ins and outs of lncRNA structure: How, why and what comes next? Biochimica Et Biophysica Acta, 1859(1), 46–58.

    Article  CAS  PubMed  Google Scholar 

  10. Dhamija, S., & Diederichs, S. (2016). From junk to master regulators of invasion: LncRNA functions in migration, EMT and metastasis. International Journal of Cancer, 139(2), 269–280.

    Article  CAS  PubMed  Google Scholar 

  11. Xin, Y., Li, Z., Shen, J., Chan, M. T., & Wu, W. K. (2016). CCAT1: A pivotal oncogenic long non-coding RNA in human cancers. Cell Proliferation, 49(3), 255–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bartonicek, N., Maag, J. L., & Dinger, M. E. (2016). Long non-coding RNAs in cancer: Mechanisms of action and technological advancements. Molecular Cancer, 15(1), 43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Katayama, S., Tomaru, Y., Kasukawa, T., Waki, K., Nakanishi, M., Nakamura, M., Nishida, H., Yap, C. C., Suzuki, M., Kawai, J., et al. (2005). Antisense transcription in the mammalian transcriptome. Science (New York, NY), 309(5740), 1564–1566.

    Article  Google Scholar 

  14. Wight, M., & Werner, A. (2013). The functions of natural antisense transcripts. Essays in Biochemistry, 54, 91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Werner, A. (2013). Biological functions of natural antisense transcripts. BMC Biology, 11, 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Villegas, V. E., & Zaphiropoulos, P. G. (2015). Neighboring gene regulation by antisense long non-coding RNAs. International Journal of Molecular Sciences, 16(2), 3251–3266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, B., Song, J. H., Cheng, Y., Abraham, J. M., Ibrahim, S., Sun, Z., Ke, X., & Meltzer, S. J. (2016). Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene, 35(37), 4927–4936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Magistri, M., Faghihi, M. A., St Laurent III, G., & Wahlestedt, C. (2012). Regulation of chromatin structure by long non-coding RNAs: focus on natural antisense transcripts. Trends in Genetics: TIG, 28(8), 389–396.

    Article  CAS  PubMed  Google Scholar 

  19. Morris, K. V., & Vogt, P. K. (2010). Long antisense non-coding RNAs and their role in transcription and oncogenesis. Cell Cycle, 9(13), 2544–2547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, Y., Xiang, B., Liu, Y., Wang, Y., & Kan, H. (2018). LncRNA CDKN2B-AS1 promotes tumor growth and metastasis of human hepatocellular carcinoma by targeting let-7c-5p/NAP1L1 axis. Cancer Letters, 437, 56–66.

    Article  CAS  PubMed  Google Scholar 

  21. Cai, Y., Dong, Z. Y., & Wang, J. Y. (2018). LncRNA NNT-AS1 is a major mediator of cisplatin chemoresistance in non-small cell lung cancer through MAPK/Slug pathway. European Review for Medical and Pharmacological Sciences, 22(15), 4879–4887.

    CAS  PubMed  Google Scholar 

  22. Chen, M., Wu, X., Ma, W., Zhou, Q., Wang, X., Zhang, R., Wang, J., & Yang, X. (2017). Decreased expression of lncRNA VPS9D1-AS1 in gastric cancer and its clinical significance. Cancer Biomarkers, 21(1), 23–28.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, L., Wei, Z., Wu, K., Dai, W., Zhang, C., Peng, J., & He, Y. (2018). Long non-coding RNA B3GALT5-AS1 suppresses colon cancer liver metastasis via repressing microRNA-203. Aging (Albany NY), 10(12), 3662–3682.

    Article  CAS  Google Scholar 

  24. Sun, Y., Li, D., Zhang, R., Peng, S., Zhang, G., Yang, T., & Qian, A. (2017). Strategies to identify natural antisense transcripts. Biochimie, 132, 131–151.

    Article  CAS  PubMed  Google Scholar 

  25. Yang, Y., Chen, L., Gu, J., Zhang, H., Yuan, J., Lian, Q., Lv, G., Wang, S., Wu, Y., Yang, Y. T., et al. (2017). Recurrently deregulated lncRNAs in hepatocellular carcinoma. Nature Communications, 8, 14421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barth, D. A., Juracek, J., Slaby, O., Pichler, M., & Calin, G. A. (2020). lncRNA and mechanisms of drug resistance in cancers of the genitourinary system. Cancers (Basel), 12(8), 2148.

    Article  CAS  Google Scholar 

  27. Podralska, M., Ciesielska, S., Kluiver, J., van den Berg, A., Dzikiewicz-Krawczyk, A., & Slezak-Prochazka, I. (2020). Non-coding RNAs in cancer radiosensitivity: microRNAs and lncRNAs as regulators of radiation-induced signaling pathways. Cancers (Basel), 12(6), 1662.

    Article  CAS  Google Scholar 

  28. Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery, 16(3), 203–222.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, X., Xiao, Y., Zhou, Y., Zhou, Z., & Yan, W. (2019). LncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of prostate cancer by sequestering miR-3184-5p to upregulate FOXP4. Cell Death & Disease, 10(7), 472.

    Article  CAS  Google Scholar 

  30. Liu, J., Zhu, J., Xiao, Z., Wang, X., & Luo, J. (2020). BBOX1-AS1 contributes to colorectal cancer progression by sponging hsa-miR-361-3p and targeting SH2B1. FEBS Open Bio. https://doi.org/10.1002/2211-5463.12802

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liang, J., Zhang, S., Wang, W., Xu, Y., Kawuli, A., Lu, J., & Xiu, X. (2020). Long non-coding RNA DSCAM-AS1 contributes to the tumorigenesis of cervical cancer by targeting miR-877–5p/ATXN7L3 axis. Bioscience Reports. https://doi.org/10.1042/BSR20192061

  32. Zhang, Y., Zhang, Y., Wang, S., Li, Q., Cao, B., Huang, B., Wang, T., Guo, R., & Liu, N. (2021). SP1-induced lncRNA ZFPM2 antisense RNA 1 (ZFPM2-AS1) aggravates glioma progression via the miR-515-5p/superoxide dismutase 2 (SOD2) axis. Bioengineered, 12(1), 2299–2310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xue, M., Tao, W., Yu, S., Yan, Z., Peng, Q., Jiang, F., & Gao, X. (2020). lncRNA ZFPM2-AS1 promotes proliferation via miR-18b-5p/VMA21 axis in lung adenocarcinoma. Journal of Cellular Biochemistry, 121(1), 313–321.

    Article  CAS  PubMed  Google Scholar 

  34. Xiao, M., Liang, Z., & Yin, Z. (2021). Long non-coding RNA ZFPM2-AS1 promotes colorectal cancer progression by sponging miR-137 to regulate TRIM24. Molecular Medicine Reports, 23(2), 98.

    Article  CAS  PubMed  Google Scholar 

  35. Sun, G., & Wu, C. (2020). ZFPM2-AS1 facilitates cell growth in esophageal squamous cell carcinoma via upregulating TRAF4. Bioscience Report, 40(4), BSR20194352.

    Article  CAS  Google Scholar 

  36. Kong, F., Deng, X., Kong, X., Du, Y., Li, L., Zhu, H., Wang, Y., Xie, D., Guha, S., Li, Z., et al. (2018). ZFPM2-AS1, a novel lncRNA, attenuates the p53 pathway and promotes gastric carcinogenesis by stabilizing MIF. Oncogene, 37(45), 5982–5996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, Y. F., Li, L., Li, H. J., Yang, F. R., Liu, Z. K., Hu, X. W., & Wang, Q. (2020). LncRNA ZFPM2-AS1 aggravates the malignant development of breast cancer via upregulating JMJD6. European Review for Medical and Pharmacological Sciences, 24(21), 11139–11147.

    PubMed  Google Scholar 

  38. Wang, X., Tang, J., Zhao, J., Lou, B., & Li, L. (2020). ZFPM2-AS1 promotes the proliferation, migration, and invasion of human non-small cell lung cancer cells involving the JAK-STAT and AKT pathways. PeerJ, 8, e10225.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ren, R., Du, Y., Niu, X., & Zang, R. (2021). ZFPM2-AS1 transcriptionally mediated by STAT1 regulates thyroid cancer cell growth, migration and invasion via miR-515-5p/TUSC3. Journal of Cancer, 12(11), 3393–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, W., Zhang, G. Q., Zhu, D. Y., Wang, L. J., Li, G. T., Xu, J. G., Jin, X. L., Zhu, Y. M., & Yang, X. Y. (2020). Long non-coding RNA ZFPM2-AS1 regulates ITGB1 by miR-1226-3p to promote cell proliferation and invasion in hepatocellular carcinoma. European Review for Medical and Pharmacological Sciences, 24(14), 7612–7620.

    CAS  PubMed  Google Scholar 

  41. Song, Y., Jin, X., Liu, Y., Wang, S., Bian, F., Zhao, Q., Shi, H., & Gao, Z. (2021). Long non-coding RNA ZFPM2-AS1 promotes the proliferation, migration, and invasion of hepatocellular carcinoma cells by regulating the miR-576-3p/HIF-1α axis. Anticancer Drugs., 32, 812.

    Article  CAS  PubMed  Google Scholar 

  42. He, H., Wang, Y., Ye, P., Yi, D., Cheng, Y., Tang, H., Zhu, Z., Wang, X., & Jin, S. (2020). Long non-coding RNA ZFPM2-AS1 acts as a miRNA sponge and promotes cell invasion through regulation of miR-139/GDF10 in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 39(1), 159.

    Article  CAS  Google Scholar 

  43. Lyv, X., Wu, F., Zhang, H., Lu, J., Wang, L., & Ma, Y. (2020). Long noncoding RNA ZFPM2-AS1 knockdown restrains the development of retinoblastoma by modulating the microRNA-515/HOXA1/Wnt/β-catenin axis. Investigative Ophthalmology & Visual Science, 61(6), 41.

    Article  CAS  Google Scholar 

  44. Liu, J. G., Wang, H. B., Wan, G., Yang, M. Z., Jiang, X. J., & Yang, J. Y. (2019). Long non-coding RNA ZFPM2-AS1 promotes the tumorigenesis of renal cell cancer via targeting miR-137. European Review for Medical and Pharmacological Sciences, 23(13), 5675–5681.

    PubMed  Google Scholar 

  45. Li, J., Ge, J., Yang, Y., Liu, B., Zheng, M., & Shi, R. (2020). Long non-coding RNA ZFPM2-AS1 is involved in lung adenocarcinoma via miR-511-3p/AFF4 pathway. Journal of Cellular Biochemistry, 121(3), 2534–2542.

    Article  CAS  PubMed  Google Scholar 

  46. Han, S., Cao, D., Sha, J., Zhu, X., & Chen, D. (2020). LncRNA ZFPM2-AS1 promotes lung adenocarcinoma progression by interacting with UPF1 to destabilize ZFPM2. Molecular Oncology, 14(5), 1074–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, W., Hu, X., Mu, X., Tian, Q., Gao, T., Ge, R., & Zhang, J. (2021). ZFPM2-AS1 facilitates cell proliferation and migration in cutaneous malignant melanoma through modulating miR-650/NOTCH1 signaling. Dermatologic Therapy, 34(2), e14751.

    CAS  PubMed  Google Scholar 

  48. Yan, Z., Yang, Q., Xue, M., Wang, S., Hong, W., & Gao, X. (2020). YY1-induced lncRNA ZFPM2-AS1 facilitates cell proliferation and invasion in small cell lung cancer via upregulating of TRAF4. Cancer Cell International, 20, 108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, X. W., Li, Q. H., Xu, Z. D., & Dou, J. J. (2021). STAT1-induced regulation of lncRNA ZFPM2-AS1 predicts poor prognosis and contributes to hepatocellular carcinoma progression via the miR-653/GOLM1 axis. Cell Death & Disease, 12(1), 31.

    Article  CAS  Google Scholar 

  50. Sugano, K. (2015). Screening of gastric cancer in Asia. Best Practice & Research Clinical Gastroenterology, 29(6), 895–905.

    Article  Google Scholar 

  51. Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics. CA: A Cancer Journal for Clinicians, 63(1), 11–30.

    Google Scholar 

  52. Lin, Y., Ueda, J., Kikuchi, S., Totsuka, Y., Wei, W. Q., Qiao, Y. L., & Inoue, M. (2011). Comparative epidemiology of gastric cancer between Japan and China. World Journal of Gastroenterology, 17(39), 4421–4428.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tan, P., & Yeoh, K. G. (2015). Genetics and molecular pathogenesis of gastric adenocarcinoma. Gastroenterology, 149(5), 1153-1162.e1153.

    Article  CAS  PubMed  Google Scholar 

  54. Cancer Genome. (2014). Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 513(7517), 202–209.

    Article  CAS  Google Scholar 

  55. Conroy, H., Mawhinney, L., & Donnelly, S. C. (2010). Inflammation and cancer: Macrophage migration inhibitory factor (MIF)—The potential missing link. QJM, 103(11), 831–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Petrizzo, A., Mauriello, A., Tornesello, M. L., Buonaguro, F. M., Tagliamonte, M., & Buonaguro, L. (2018). Cellular prognostic markers in hepatitis-related hepatocellular carcinoma. Infectious Agent and Cancer, 13, 10.

    Article  CAS  Google Scholar 

  57. Bertuccio, P., Turati, F., Carioli, G., Rodriguez, T., La Vecchia, C., Malvezzi, M., & Negri, E. (2017). Global trends and predictions in hepatocellular carcinoma mortality. Journal of Hepatology, 67(2), 302–309.

    Article  PubMed  Google Scholar 

  58. Lu, T. F., Hua, X. W., Cui, X. L., & Xia, Q. (2014). Liver transplantation for hepatocellular carcinoma: Recent advances in China. Journal of Digestive Diseases, 15(2), 51–53.

    Article  CAS  PubMed  Google Scholar 

  59. Xu, X., Chen, J., Wei, Q., Liu, Z. K., Yang, Z., Zhang, M., Wang, G. Y., Gao, J., Yang, Z. X., Guo, W. Y., et al. (2018). Clinical practice guidelines on liver transplantation for hepatocellular carcinoma in China (Edition). Hepatobiliary & Pancreatic Diseases International: HBPD INT, 18(4), 307–312.

    Article  Google Scholar 

  60. Yin, W., Zhao, Y., Ji, Y. J., Tong, L. P., Liu, Y., He, S. X., & Wang, A. Q. (2015). Serum/plasma microRNAs as biomarkers for HBV-related hepatocellular carcinoma in China. Biomed Research International, 2015, 965185.

    PubMed  PubMed Central  Google Scholar 

  61. Xu, X. F., Xing, H., Han, J., Li, Z. L., Lau, W. Y., Zhou, Y. H., Gu, W. M., Wang, H., Chen, T. H., Zeng, Y. Y., et al. (2019). Risk factors, patterns, and outcomes of late recurrence after liver resection for hepatocellular carcinoma: A multicenter study from China. JAMA Surgery, 154(3), 209–217.

    Article  PubMed  Google Scholar 

  62. Zhu, Q., Li, N., Zeng, X., Han, Q., Li, F., Yang, C., Lv, Y., Zhou, Z., & Liu, Z. (2015). Hepatocellular carcinoma in a large medical center of China over a 10-year period: Evolving therapeutic option and improving survival. Oncotarget, 6(6), 4440–4450.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yan, J., Zhou, C., Guo, K., Li, Q., & Wang, Z. (2019). A novel seven-lncRNA signature for prognosis prediction in hepatocellular carcinoma. Journal of Cellular Biochemistry, 120(1), 213–223.

    Article  CAS  PubMed  Google Scholar 

  64. Abbastabar, M., Sarfi, M., Golestani, A., & Khalili, E. (2018). lncRNA involvement in hepatocellular carcinoma metastasis and prognosis. EXCLI Journal, 17, 900–913.

    PubMed  PubMed Central  Google Scholar 

  65. Dickson, I. (2016). Hepatocellular carcinoma: A role for lncRNA in liver cancer. Nature Reviews Gastroenterology & Hepatology, 13(3), 122–123.

    Google Scholar 

  66. Nagai, H., & Kim, Y. H. (2017). Cancer prevention from the perspective of global cancer burden patterns. Journal of Thoracic Disease, 9(3), 448–451.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen, W., He, Y., Zheng, R., Zhang, S., Zeng, H., Zou, X., & He, J. (2013). Esophageal cancer incidence and mortality in China, 2009. Journal of Thoracic Disease, 5(1), 19–26.

    PubMed  PubMed Central  Google Scholar 

  68. Arnold, M., Soerjomataram, I., Ferlay, J., & Forman, D. (2015). Global incidence of oesophageal cancer by histological subtype in 2012. Gut, 64(3), 381–387.

    Article  PubMed  Google Scholar 

  69. Kollarova, H., Machova, L., Horakova, D., Janoutova, G., & Janout, V. (2007). Epidemiology of esophageal cancer: An overview article. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 151(1), 17–20.

    Article  PubMed  Google Scholar 

  70. Zhang, Y., Chen, W., Pan, T., Wang, H., Zhang, Y., & Li, C. (2019). LBX2-AS1 is activated by ZEB1 and promotes the development of esophageal squamous cell carcinoma by interacting with HNRNPC to enhance the stability of ZEB1 and ZEB2 mRNAs. Biochemical and Biophysical Research Communications, 511(3), 566–572.

    Article  CAS  PubMed  Google Scholar 

  71. Abraham, J. M., & Meltzer, S. J. (2017). Long non-coding RNAs in the pathogenesis of Barrett’s esophagus and esophageal carcinoma. Gastroenterology, 153(1), 27–34.

    Article  CAS  PubMed  Google Scholar 

  72. Seib, C. D., & Sosa, J. A. (2019). Evolving understanding of the epidemiology of thyroid cancer. Endocrinology and Metabolism Clinics of North America, 48(1), 23–35.

    Article  PubMed  Google Scholar 

  73. Cabanillas, M. E., McFadden, D. G., & Durante, C. (2016). Thyroid cancer. Lancet (London, England), 388(10061), 2783–2795.

    Article  CAS  Google Scholar 

  74. Liu, H., Deng, H., Zhao, Y., Li, C., & Liang, Y. (2018). LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. Journal of Experimental & Clinical Cancer Research, 37(1), 279.

    Article  CAS  Google Scholar 

  75. Zhu, X., Chen, L., Liu, L., & Niu, X. (2019). EMT-mediated acquired EGFR-TKI resistance in NSCLC: Mechanisms and strategies. Frontiers in Oncology, 9, 1044.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pastushenko, I., & Blanpain, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226.

    Article  CAS  PubMed  Google Scholar 

  77. Chen, T., You, Y., Jiang, H., & Wang, Z. Z. (2017). Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. Journal of Cellular Physiology, 232(12), 3261–3272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Joo, M. S., Shin, S. B., Kim, E. J., Koo, J. H., Yim, H., & Kim, S. G. (2019). Nrf2-lncRNA controls cell fate by modulating p53-dependent Nrf2 activation as an miRNA sponge for Plk2 and p21(cip1). The FASEB Journal, 33(7), 7953–7969.

    Article  CAS  PubMed  Google Scholar 

  79. Haass, N. K., & Schumacher, U. (2014). Melanoma never says die. Experimental Dermatology, 23(7), 471–472.

    Article  PubMed  Google Scholar 

  80. Kosnopfel, C., Sinnberg, T., Sauer, B., Busch, C., Niessner, H., Schmitt, A., Forchhammer, S., Grimmel, C., Mertens, P. R., Hailfinger, S., et al. (2018). YB-1 expression and phosphorylation regulate tumorigenicity and invasiveness in melanoma by influencing EMT. Molecular Cancer Research, 16(7), 1149–1160.

    Article  CAS  PubMed  Google Scholar 

  81. Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics. CA: A Cancer Journal for Clinicians, 67(1), 7–30.

    Google Scholar 

  82. Chen, W., Zheng, R., Baade, P. D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X. Q., & He, J. (2016). Cancer statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66(2), 115–132.

    Google Scholar 

  83. Tsao, H., Chin, L., Garraway, L. A., & Fisher, D. E. (2012). Melanoma: From mutations to medicine. Genes & Development, 26(11), 1131–1155.

    Article  CAS  Google Scholar 

  84. Paluncic, J., Kovacevic, Z., Jansson, P. J., Kalinowski, D., Merlot, A. M., Huang, M. L., Lok, H. C., Sahni, S., Lane, D. J., & Richardson, D. R. (2016). Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. Biochimica et Biophysica Acta, 1863(4), 770–784.

    Article  CAS  PubMed  Google Scholar 

  85. Ito, H., & Matsuo, K. (2016). Molecular epidemiology, and possible real-world applications in breast cancer. Breast Cancer, 23(1), 33–38.

    Article  PubMed  Google Scholar 

  86. DeSantis, C., Ma, J., Bryan, L., & Jemal, A. (2014). Breast cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 64(1), 52–62.

    Google Scholar 

  87. DeSantis, C. E., Ma, J., Goding Sauer, A., Newman, L. A., & Jemal, A. (2017). Breast cancer statistics, 2017, racial disparity in mortality by state. CA: A Cancer Journal for Clinicians, 67(6), 439–448.

    Google Scholar 

  88. Fan, L., Strasser-Weippl, K., Li, J. J., St Louis, J., Finkelstein, D. M., Yu, K. D., Chen, W. Q., Shao, Z. M., & Goss, P. E. (2014). Breast cancer in China. The Lancet Oncology, 15(7), e279-289.

    Article  PubMed  Google Scholar 

  89. Boyages, J. (2017). Radiation therapy and early breast cancer: Current controversies. The Medical Journal of Australia, 207(5), 216–222.

    Article  PubMed  Google Scholar 

  90. Rasha, F., Ramalingam, L., Gollahon, L., Rahman, R. L., Rahman, S. M., Menikdiwela, K., & Moustaid-Moussa, N. (2019). Mechanisms linking the renin-angiotensin system, obesity, and breast cancer. Endocrine-Related Cancer, 26(12), R653-r672.

    Article  CAS  PubMed  Google Scholar 

  91. Chang-Qing, Y., Jie, L., Shi-Qi, Z., Kun, Z., Zi-Qian, G., Ran, X., Hui-Meng, L., Ren-Bin, Z., Gang, Z., Da-Chuan, Y., et al. (2020). Recent treatment progress of triple negative breast cancer. Progress in Biophysics and Molecular Biology, 151, 40–53.

    Article  PubMed  CAS  Google Scholar 

  92. Niell, B. L., Freer, P. E., Weinfurtner, R. J., Arleo, E. K., & Drukteinis, J. S. (2017). Screening for breast cancer. Radiologic Clinics of North America, 55(6), 1145–1162.

    Article  PubMed  Google Scholar 

  93. Coleman, C. (2017). Early detection and screening for breast cancer. Seminars in Oncology Nursing, 33(2), 141–155.

    Article  PubMed  Google Scholar 

  94. da Costa Vieira, R. A., Biller, G., Uemura, G., Ruiz, C. A., & Curado, M. P. (2017). Breast cancer screening in developing countries. Clinics (Sao Paulo, Brazil), 72(4), 244–253.

    Article  Google Scholar 

  95. Castaneda, S. A., & Strasser, J. (2017). Updates in the treatment of breast cancer with radiotherapy. Surgical Oncology Clinics of North America, 26(3), 371–382.

    Article  PubMed  Google Scholar 

  96. Jathar, S., Kumar, V., Srivastava, J., & Tripathi, V. (2017). Technological developments in lncRNA biology. Advances in Experimental Medicine and Biology, 1008, 283–323.

    Article  CAS  PubMed  Google Scholar 

  97. McDonel, P., & Guttman, M. (2019). Approaches for Understanding the Mechanisms of Long Noncoding RNA Regulation of Gene Expression. Cold Spring Harbor Perspectives in Biology, 11(12), a032151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bhan, A., Soleimani, M., & Mandal, S. S. (2017). Long non-coding RNA and cancer: A new paradigm. Cancer Research, 77(15), 3965–3981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kumar, M. M., & Goyal, R. (2017). LncRNA as a therapeutic target for angiogenesis. Current Topics in Medicinal Chemistry, 17(15), 1750–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huang, Q. Y., Liu, G. F., Qian, X. L., Tang, L. B., Huang, Q. Y., & Xiong, L. X. (2019). Long non-coding RNA: Dual effects on breast cancer metastasis and clinical applications. Cancers (Basel), 11(11), 1802.

    Article  CAS  Google Scholar 

  101. Ferrè, F., Colantoni, A., & Helmer-Citterich, M. (2016). Revealing protein-lncRNA interaction. Briefings in Bioinformatics, 17(1), 106–116.

    Article  PubMed  CAS  Google Scholar 

  102. Zhang, J., Benavente, C. A., McEvoy, J., Flores-Otero, J., Ding, L., Chen, X., Ulyanov, A., Wu, G., Wilson, M., Wang, J., et al. (2012). A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature, 481(7381), 329–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Obesso, A., Alejo, L., Huerga, C., Sánchez-Muñoz, F., Corredoira, E., Fernández-Prieto, A., Frutos, R., Marín, B., Garzón, G., Peralta, J., et al. (2019). Eye lens radiation exposure in paediatric interventional treatment of retinoblastoma. Science and Reports, 9(1), 20113.

    Article  CAS  Google Scholar 

  104. Abramson, D. H., Shields, C. L., Munier, F. L., & Chantada, G. L. (2015). Treatment of retinoblastoma in 2015: Agreement and disagreement. JAMA Ophthalmology, 133(11), 1341–1347.

    Article  PubMed  Google Scholar 

  105. Gündüz, K., Müftüoglu, O., Günalp, I., Unal, E., & Taçyildiz, N. (2006). Metastatic retinoblastoma clinical features, treatment, and prognosis. Ophthalmology, 113(9), 1558–1566.

    Article  PubMed  Google Scholar 

  106. Yang, L., Zhang, L., Lu, L., & Wang, Y. (2019). Long noncoding RNA SNHG16 sponges miR-182-5p And miR-128-3p to promote retinoblastoma cell migration and invasion by targeting LASP1. Oncotargets and Therapy, 12, 8653–8662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xiao, W., Chen, X., & He, M. (2014). Inhibition of the Jagged/Notch pathway inhibits retinoblastoma cell proliferation via suppressing the PI3K/Akt, Src, p38MAPK and Wnt/β-catenin signaling pathways. Molecular Medicine Reports, 10(1), 453–458.

    Article  CAS  PubMed  Google Scholar 

  108. Wang, B. M., & Li, N. (2018). Effect of the Wnt/β-catenin signaling pathway on apoptosis, migration, and invasion of transplanted hepatocellular carcinoma cells after transcatheter arterial chemoembolization in rats. Journal of Cellular Biochemistry, 119(5), 4050–4060.

    Article  CAS  PubMed  Google Scholar 

  109. Hirsch, F. R., Scagliotti, G. V., Mulshine, J. L., Kwon, R., Curran, W. J., Jr., Wu, Y. L., & Paz-Ares, L. (2017). Lung cancer: Current therapies and new targeted treatments. Lancet (London, England), 389(10066), 299–311.

    Article  CAS  Google Scholar 

  110. Ma, X. L., Xiao, Z. L., Liu, L., Liu, X. X., Nie, W., Li, P., Chen, N. Y., & Wei, Y. Q. (2012). Meta-analysis of circulating tumor cells as a prognostic marker in lung cancer. Asian Pacific Journal of Cancer Prevention, 13(4), 1137–1144.

    Article  PubMed  Google Scholar 

  111. Han, B., Park, D., Li, R., Xie, M., Owonikoko, T. K., Zhang, G., Sica, G. L., Ding, C., Zhou, J., Magis, A. T., et al. (2015). Small-molecule Bcl2 BH4 antagonist for lung cancer therapy. Cancer Cell, 27(6), 852–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dutta, P., Sabri, N., Li, J., & Li, W. X. (2014). Role of STAT3 in lung cancer. Jak-stat, 3(4), 999503.

    Article  Google Scholar 

  113. Mitsudomi, T., & Yatabe, Y. (2007). Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Science, 98(12), 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  114. Nath, A. P., Ritchie, S. C., Grinberg, N. F., Tang, H. H., Huang, Q. Q., Teo, S. M., Ahola-Olli, A. V., Würtz, P., Havulinna, A. S., Santalahti, K., et al. (2019). Multivariate genome-wide association analysis of a cytokine network reveals variants with widespread immune, haematological, and cardiometabolic pleiotropy. American Journal of Human Genetics, 105(6), 1076–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Herbst, R. S., Heymach, J. V., & Lippman, S. M. (2008). Lung cancer. The New England Journal of Medicine, 359(13), 1367–1380.

    Article  CAS  PubMed  Google Scholar 

  116. Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62(1), 10–29.

    Google Scholar 

  117. Lin, J. J., Cardarella, S., Lydon, C. A., Dahlberg, S. E., Jackman, D. M., Jänne, P. A., & Johnson, B. E. (2016). Five-year survival in EGFR-mutant metastatic lung adenocarcinoma treated with EGFR-TKIs. Journal of Thoracic Oncology, 11(4), 556–565.

    Article  PubMed  Google Scholar 

  118. Kim, M. H., Kim, Y. K., Shin, D. H., Lee, H. J., Shin, N., Kim, A., Lee, J. H., Choi, K. U., Kim, J. Y., Lee, C. H., et al. (2015). Yes associated protein is a poor prognostic factor in well-differentiated lung adenocarcinoma. International Journal of Clinical and Experimental Pathology, 8(12), 15933–15939.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lin, S., Sun, J. G., Wu, J. B., Long, H. X., Zhu, C. H., Xiang, T., Ma, H., Zhao, Z. Q., Yao, Q., Zhang, A. M., et al. (2012). Aberrant microRNAs expression in CD133+/CD326+ human lung adenocarcinoma initiating cells from A549. Molecules and Cells, 33(3), 277–283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Oronsky, B., Reid, T. R., Oronsky, A., & Carter, C. A. (2017). What’s new in SCLC? A review. Neoplasia (New York, NY), 19(10), 842–847.

    Article  CAS  Google Scholar 

  121. Hann, C. L., & Rudin, C. M. (2008). Management of small-cell lung cancer: Incremental changes but hope for the future. Oncology (Williston Park, NY), 22(13), 1486–1492.

    Google Scholar 

  122. Tsoukalas, N., Aravantinou-Fatorou, E., Baxevanos, P., Tolia, M., Tsapakidis, K., Galanopoulos, M., Liontos, M., & Kyrgias, G. (2018). Advanced small cell lung cancer (SCLC): New challenges and new expectations. Annals of Translational Medicine, 6(8), 145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Bunn, P. A., Jr., Minna, J. D., Augustyn, A., Gazdar, A. F., Ouadah, Y., Krasnow, M. A., Berns, A., Brambilla, E., Rekhtman, N., Massion, P. P., et al. (2016). Small cell lung cancer: Can recent advances in biology and molecular biology be translated into improved outcomes? Journal of Thoracic Oncology, 11(4), 453–474.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Herrmann, M. K., Bloch, E., Overbeck, T., Koerber, W., Wolff, H. A., Hille, A., Vorwerk, H., Hess, C. F., Muller, M., Christiansen, H., et al. (2011). Mediastinal radiotherapy after multidrug chemotherapy and prophylactic cranial irradiation in patients with SCLC: Treatment results after long-term follow-up and literature overview. Cancer Radiotherapie, 15(2), 81–88.

    Article  CAS  PubMed  Google Scholar 

  125. Bonavida, B., & Kaufhold, S. (2015). Prognostic significance of YY1 protein expression and mRNA levels by bioinformatics analysis in human cancers: A therapeutic target. Pharmacology & therapeutics, 150, 149–168.

    Article  CAS  Google Scholar 

  126. Zhang, J., Jiang, Y., Zhu, J., Wu, T., Ma, J., Du, C., Chen, S., Li, T., Han, J., & Wang, X. (2017). Overexpression of long non-coding RNA colon cancer-associated transcript 2 is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Oncology Letters, 14(6), 6907–6914.

    PubMed  PubMed Central  Google Scholar 

  127. Simon, K. (2016). Colorectal cancer development and advances in screening. Clinical Interventions in Aging, 11, 967–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ge, X., Li, G. Y., Jiang, L., Jia, L., Zhang, Z., Li, X., Wang, R., Zhou, M., Zhou, Y., Zeng, Z., et al. (2019). Long non-coding RNA CAR10 promotes lung adenocarcinoma metastasis via miR-203/30/SNAI axis. Oncogene, 38(16), 3061–3076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang, H., Liu, P., Zhang, J., Peng, X., Lu, Z., Yu, S., Meng, Y., Tong, W. M., & Chen, J. (2016). Long non-coding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene, 35(28), 3647–3657.

    Article  CAS  PubMed  Google Scholar 

  130. Chen, L., Wang, X., Wang, H., Li, Y., Yan, W., Han, L., Zhang, K., Zhang, J., Wang, Y., Feng, Y., et al. (2012). miR-137 is frequently down-regulated in glioblastoma and is a negative regulator of Cox-2. European Journal of Cancer, 48(16), 3104–3111.

    Article  CAS  PubMed  Google Scholar 

  131. Li, X., Chen, W., Zeng, W., Wan, C., Duan, S., & Jiang, S. (2017). microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. British Journal of Cancer, 116(1), 66–76.

    Article  CAS  PubMed  Google Scholar 

  132. Peres, J., Kwesi-Maliepaard, E. M., Rambow, F., Larue, L., & Prince, S. (2017). The tumour suppressor, miR-137, inhibits malignant melanoma migration by targetting the TBX3 transcription factor. Cancer Letters, 405, 111–119.

    Article  CAS  PubMed  Google Scholar 

  133. Sun, L., Liang, J., Wang, Q., Li, Z., Du, Y., & Xu, X. (2016). MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion. Cell Proliferation, 49(5), 628–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Miao, H., Wang, N., Shi, L. X., Wang, Z., & Song, W. B. (2019). Overexpression of mircoRNA-137 inhibits cervical cancer cell invasion, migration and epithelial-mesenchymal transition by suppressing the TGF-β/smad pathway via binding to GREM1. Cancer Cell International, 19, 147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Balaguer, F., Link, A., Lozano, J. J., Cuatrecasas, M., Nagasaka, T., Boland, C. R., & Goel, A. (2010). Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Research, 70(16), 6609–6618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 10(3), 155–159.

    Article  CAS  PubMed  Google Scholar 

  137. Ulitsky, I., & Bartel, D. P. (2013). lincRNAs: Genomics, evolution, and mechanisms. Cell, 154(1), 26–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long non-coding RNAs. Molecular Cell, 43(6), 904–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fukaya, R., Ohta, S., Yaguchi, T., Matsuzaki, Y., Sugihara, E., Okano, H., Saya, H., Kawakami, Y., Kawase, T., Yoshida, K., et al. (2016). MIF maintains the tumorigenic capacity of brain tumor-initiating cells by directly inhibiting p53. Cancer Research, 76(9), 2813–2823.

    Article  CAS  PubMed  Google Scholar 

  140. Mitchell, R. A., Liao, H., Chesney, J., Fingerle-Rowson, G., Baugh, J., David, J., & Bucala, R. (2002). Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: Regulatory role in the innate immune response. Proceedings of the National Academy of Science USA, 99(1), 345–350.

    Article  CAS  Google Scholar 

  141. Brock, S. E., Rendon, B. E., Xin, D., Yaddanapudi, K., & Mitchell, R. A. (2014). MIF family members cooperatively inhibit p53 expression and activity. PLoS ONE, 9(6), e99795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Salminen, A., & Kaarniranta, K. (2011). Control of p53 and NF-κB signaling by WIP1 and MIF: Role in cellular senescence and organismal aging. Cellular Signalling, 23(5), 747–752.

    Article  CAS  PubMed  Google Scholar 

  143. Jung, H., Seong, H. A., & Ha, H. (2008). Direct interaction between NM23-H1 and macrophage migration inhibitory factor (MIF) is critical for alleviation of MIF-mediated suppression of p53 activity. Journal of Biological Chemistry, 283(47), 32669–32679.

    Article  CAS  PubMed  Google Scholar 

  144. Jung, H., Seong, H. A., & Ha, H. (2008). Critical role of cysteine residue 81 of macrophage migration inhibitory factor (MIF) in MIF-induced inhibition of p53 activity. Journal of Biological Chemistry, 283(29), 20383–20396.

    Article  CAS  PubMed  Google Scholar 

  145. Bellini, M. F., Cadamuro, A. C., Succi, M., Proença, M. A., & Silva, A. E. (2012). Alterations of the TP53 gene in gastric and esophageal carcinogenesis. Journal of Biomedicine & Biotechnology, 2012, 891961.

    Article  CAS  Google Scholar 

  146. Imazeki, F., Omata, M., Nose, H., Ohto, M., & Isono, K. (1992). p53 gene mutations in gastric and esophageal cancers. Gastroenterology, 103(3), 892–896.

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, A., Xu, M., & Mo, Y. Y. (2014). Role of the lncRNA-p53 regulatory network in cancer. Journal of Molecular Cell Biology, 6(3), 181–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Peppicelli, S., Bianchini, F., Contena, C., Tombaccini, D., & Calorini, L. (2013). Acidic pH via NF-κB favours VEGF-C expression in human melanoma cells. Clinical & Experimental Metastasis, 30(8), 957–967.

    Article  CAS  Google Scholar 

  149. Lu, T., & Stark, G. R. (2015). NF-κB: Regulation by methylation. Cancer Research, 75(18), 3692–3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Aggarwal, B. B. (2004). Nuclear factor-kappaB: The enemy within. Cancer Cell, 6(3), 203–208.

    Article  CAS  PubMed  Google Scholar 

  151. Krawczyk, M., & Emerson, B. M. (2014). p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-κB complexes. Elife, 3, e01776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Liu, B., Sun, L., Liu, Q., Gong, C., Yao, Y., Lv, X., Lin, L., Yao, H., Su, F., Li, D., et al. (2015). A cytoplasmic NF-κB interacting long non-coding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 27(3), 370–381.

    Article  CAS  PubMed  Google Scholar 

  153. Rapicavoli, N. A., Qu, K., Zhang, J., Mikhail, M., Laberge, R. M., & Chang, H. Y. (2013). A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife, 2, e00762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Zhao, J., Gai, L., Gao, Y., Xia, W., Shen, D., Lin, Q., Mao, W., Wang, F., Liu, P., & Chen, J. (2018). TAB3 promotes human esophageal squamous cell carcinoma proliferation and invasion via the NF-κB pathway. Oncology Reports, 40(5), 2876–2885.

    CAS  PubMed  Google Scholar 

  155. Zhu, L., Zhang, S., Huan, X., Mei, Y., & Yang, H. (2018). Down-regulation of TRAF4 targeting RSK4 inhibits proliferation, invasion and metastasis in breast cancer xenografts. Biochemical and Biophysical Research Communications, 500(3), 810–816.

    Article  CAS  PubMed  Google Scholar 

  156. Kim, E., Kim, W., Lee, S., Chun, J., Kang, J., Park, G., Han, I., Yang, H. J., Youn, H., & Youn, B. (2017). TRAF4 promotes lung cancer aggressiveness by modulating tumor microenvironment in normal fibroblasts. Science and Reports, 7(1), 8923.

    Article  CAS  Google Scholar 

  157. Kumari, N., Dwarakanath, B. S., Das, A., & Bhatt, A. N. (2016). Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biology, 37(9), 11553–11572.

    Article  CAS  PubMed  Google Scholar 

  158. Kusaba, T., Nakayama, T., Yamazumi, K., Yakata, Y., Yoshizaki, A., Inoue, K., Nagayasu, T., & Sekine, I. (2006). Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncology Reports, 15(6), 1445–1451.

    CAS  PubMed  Google Scholar 

  159. Chen, Y., Wang, J., Wang, X., Liu, X., Li, H., Lv, Q., Zhu, J., Wei, B., & Tang, Y. (2013). STAT3, a poor survival predicator, is associated with lymph node metastasis from breast cancer. Journal of Breast Cancer, 16(1), 40–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Macha, M. A., Matta, A., Kaur, J., Chauhan, S. S., Thakar, A., Shukla, N. K., Gupta, S. D., & Ralhan, R. (2011). Prognostic significance of nuclear pSTAT3 in oral cancer. Head & Neck, 33(4), 482–489.

    Article  Google Scholar 

  161. Ferreira, L. B., Palumbo, A., de Mello, K. D., Sternberg, C., Caetano, M. S., de Oliveira, F. L., Neves, A. F., Nasciutti, L. E., Goulart, L. R., & Gimba, E. R. (2012). PCA3 non-coding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer, 12, 507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gutschner, T., Hämmerle, M., Eissmann, M., Hsu, J., Kim, Y., Hung, G., Revenko, A., Arun, G., Stentrup, M., Gross, M., et al. (2013). The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Research, 73(3), 1180–1189.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Foundation of Science technology Department of Zhejiang Province, China social development projects (LGF21C050001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Meiyu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasa, G.B.K., Xuan, C., Lyu, G. et al. Long Non-coding RNA ZFPM2-AS1: A Novel Biomarker in the Pathogenesis of Human Cancers. Mol Biotechnol 64, 725–742 (2022). https://doi.org/10.1007/s12033-021-00443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00443-3

Keywords

Navigation