Skip to main content
Log in

Genomic Organization of Streptomyces flavotricini NGL1 and Streptomyces erythrochromogenes HMS4 Reveals Differential Plant Beneficial Attributes and Laccase Production Capabilities

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The genus Streptomyces has been explored in industrial sectors due to its endurance to environmental stresses, the production of a plethora of biomolecules, the biological remediation of soils, and alleviating plant stresses. The whole genome of NGL1 and HMS4 was sequenced due to the specific laccase activity against 2,6-dimethoxyphenol (2,6-DMP) and differential plant beneficial attributes. The deduced genome of 8.85 Mbp and 7.73 Mbp in size with a G+C content of 72.03% and 72.3% was obtained for NGL1 and HMS4, respectively. A total of 8438 and 7322 protein coding genes, 155 (130 tRNA, 25 rRNA) and 145 tRNA (121 tRNA, 24 rRNA) coding genes were predicted in NGL1 and HMS4, respectively. The comparative genomics of NGL1 and HMS4 showed 185 and 162 genes encoding for carbohydrate-active enzymes, respectively. The genomic ability of these strains to encode carbohydrate-active enzymes, laccase, and diversity of BGCs, along with plant beneficial attributes to suppress the plant pathogens can be used for several industrial and agricultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The nucleotide sequences for 16S rRNA gene are submitted in NCBI GenBank with accession numbers MZ928430 for NGL1 and MZ928431 for HMS4. The whole-Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession no. JAINUL000000000 and JAINUE000000000 for Streptomyces flavotricini NGL1 (https://www.ncbi.nlm.nih.gov/nuccore/JAINUE000000000) and Streptomyces erythrochromogenes HMS4 (https://www.ncbi.nlm.nih.gov/nuccore/JAINUE000000000), respectively. The submission ID: SUB10271849, BioProject ID: PRJNA758194 for NGL1 and BioProject ID: PRJNA758184, BioSample accession: SAMN21014842, Submission ID: SUB10271813 for HMS4.

References

  1. de SousaOlivares, J. A. F. L. (2016). Plant growth promotion by streptomycetes: Ecophysiology, mechanisms and applications. Chemical and Biological Technologies in Agriculture, 3(1), 1–12. https://doi.org/10.1186/s40538-016-0073-5

    Article  CAS  Google Scholar 

  2. Salwan, R., & Sharma, V. (2020). Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiological Research, 231, 126374. https://doi.org/10.1016/j.micres.2019.126374

    Article  CAS  PubMed  Google Scholar 

  3. Salwan, R., & Sharma, V. (2018). Biocontrol potential and applications of actinobacteria. In R. Salwan & V. Sharma (Eds.), New and future developments in microbial biotechnology and bioengineering (pp. 93–108). Elsevier.

    Google Scholar 

  4. Salwan, R., & Sharma, V. (2018). Role of actinobacteria in production of industrial enzymes. In R. Salwan & V. Sharma (Eds.), New and future developments in microbial biotechnology and bioengineering (pp. 165–177). Elsevier.

    Chapter  Google Scholar 

  5. Lee, N., Hwang, S., Kim, J., Cho, S., Palsson, B., & Cho, B. (2020). Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Computational and Structural Biotechnology Journal, 18, 1548–1556. https://doi.org/10.1016/j.csbj.2020.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Romano-Armada, N., Yañez-Yazlle, M. F., Irazusta, V. P., Rajal, V. B., & Moraga, N. B. (2020). potential of bioremediation and PGP traits in Streptomyces as strategies for bio-reclamation of salt-affected soils for agriculture. Pathogens, 9(2), 117. https://doi.org/10.3390/pathogens9020117

    Article  CAS  PubMed Central  Google Scholar 

  7. Lehr, N. A., Schrey, S. D., Hampp, R., & Tarkka, M. T. (2008). Root inoculation with a forest soil Streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytologist, 177(4), 965–976. https://doi.org/10.1111/j.1469-8137.2007.02322.x

    Article  Google Scholar 

  8. Schrey, S. D., & Tarkka, M. T. (2008). Friends and foes: Streptomycetes as modulators of plant disease and symbiosis. Antonie van Leeuwenhoek, 94(1), 11–19. https://doi.org/10.1007/s10482-008-9241-3

    Article  PubMed  Google Scholar 

  9. Guo, D., Ren, C., Ali, A., Li, R., Du, J., Liu, X., & Guan, W. (2019). Streptomyces pactum combined with manure compost alters soil fertility and enzymatic activities, enhancing phytoextraction of potentially toxic metals (PTMs) in a smelter-contaminated soil. Ecotoxicology and Environmental Safety, 181, 312–320. https://doi.org/10.1016/j.ecoenv.2019.06.024

    Article  CAS  PubMed  Google Scholar 

  10. Kanini, G. S., Katsifas, E. A., Savvides, A. L., et al. (2013). Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f.sp. lycopersici. BioMed Research International, 2013, 387230.

    Article  Google Scholar 

  11. Salwan, R., & Sharma, V. (2020). Genome wide underpinning of antagonistic and plant beneficial attributes of Bacillus cereus isolate SBA12. Genomics, 112(4), 2894–2902. https://doi.org/10.1016/j.ygeno.2020.03.029

    Article  CAS  PubMed  Google Scholar 

  12. Asemoloye, M. D., Jonathan, S. G., Jayeola, A. A., & Ahmad, R. (2017). Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq. Journal of Environmental Management, 200, 253–262. https://doi.org/10.1016/j.jenvman.2017.05.090

    Article  CAS  PubMed  Google Scholar 

  13. Adenan, N. H., Lim, Y. Y., Su, A., & Ting, Y. (2021). Identification and optimization of triphenylmethane dyes removal by Streptomyces sp. from forest soil. Sustainable Environmental Research, 31, 8. https://doi.org/10.1186/s42834-021-00081-z

    Article  CAS  Google Scholar 

  14. Raimondo, E. E., Saez, J. M., Aparicio, J. D., Fuentes, M. S., & Benimeli, C. S. (2020). Chemosphere coupling of bioaugmentation and biostimulation to improve lindane removal from different soil types. Chemosphere, 238, 124512. https://doi.org/10.1016/j.chemosphere.2019.124512

    Article  CAS  PubMed  Google Scholar 

  15. Labeda, D. P., Goodfellow, M., Brown, R., Ward, A. C., Lanoot, B., Vanncanneyt, M., et al. (2012). Phylogenetic study of the species within the family Streptomycetaceae. Antonie van Leeuwenhoek, 101, 73–104. https://doi.org/10.1007/s10482-011-9656-0

    Article  CAS  PubMed  Google Scholar 

  16. Danaei, M., Baghizadeh, A., Pourseyedi, S., et al. (2014). Biological control of plant fungal diseases using volatile substances of Streptomyces griseus. European Journal of Experimental Biology, 4, 334–339.

    Google Scholar 

  17. Gopalakrishnan, S., Srinivas, V., Sree Vidya, M., & Rathore, A. (2013). Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. Springerplus, 2, 574. https://doi.org/10.1186/2193-1801-2-574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, J., Zhao, G.-Z., Chen, H.-H., et al. (2008). Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Letters in Applied Microbiology, 47, 574–580.

    Article  CAS  Google Scholar 

  19. Rakotoniriana, E. F., Chataigne, G., Raoelison, G., et al. (2012). Characterization of an endophytic whorl-forming Streptomyces from Catharanthus roseus stems producing polyene macrolide antibiotic. Canadian Journal of Microbiology, 58, 617–627.

    Article  CAS  Google Scholar 

  20. Schlatter, D. C., & Kinkel, L. L. (2015). Do tradeoffs structure antibiotic inhibition, resistance, and resource use among soil-borne Streptomyces? BMC Evolutionary Biology, 15, 186.

    Article  Google Scholar 

  21. Yang, Z., He, J., Wei, X., Ju, J., & Ma, J. (2019). Exploration and genome mining of natural products from marine Streptomyces. Applied Microbiology and Biotechnology, 104(1), 67–76. https://doi.org/10.1007/s00253-019-10227-0

    Article  CAS  PubMed  Google Scholar 

  22. Diana, C., Va, M., Alvarez-buylla, E. R., & Sa, S. (2018). Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions. PLoS ONE, 13, e0192618.

    Article  Google Scholar 

  23. Salwan, R., Sharma, V., Sharma, A., & Singh, A. (2020). Molecular imprints of plant beneficial Streptomyces sp. AC30 and AC40 reveal differential capabilities and strategies to counter environmental stresses. Microbiological Research, 235, 126449. https://doi.org/10.1016/j.micres.2020.126449

    Article  CAS  PubMed  Google Scholar 

  24. Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A.-M., Challis, G. L., Thomson, N. R., James, K. D., et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141–147.

    Article  Google Scholar 

  25. Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., et al. (2003). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnology, 21, 526–531.

    Article  Google Scholar 

  26. Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A., Hattori, M., & Horinouchi, S. (2008). Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. Journal of Bacteriology, 190, 4050–4060.

    Article  CAS  Google Scholar 

  27. Hu, D., Li, X., Chang, Y., He, H., Zhang, C., Jia, N., et al. (2012). Genome sequence of Streptomyces sp. strain TOR3209, a Rhizosphere microecology regulator isolated from tomato rhizosphere. Journal of Bacteriology, 194, 1627. https://doi.org/10.1128/JB.06684-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choudhary, B., Nagpure, A., & Gupta, R. K. (2014). Fungal cell-wall lytic enzymes, antifungal metabolite(s) production, and characterization from Streptomyces exfoliates MT9 for controlling fruit-rotting fungi. Journal of Basic Microbiology, 54(12), 1295–1309.

    Article  CAS  Google Scholar 

  29. Citron, C. A., Barra, L., Wink, J., et al. (2015). Volatiles from nineteen recently genome sequenced actinomycetes. Organic & Biomolecular Chemistry, 13, 2673–2683.

    Article  CAS  Google Scholar 

  30. Cordovez, V., Carrion, V. J., Etalo, D. W., et al. (2015). Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology, 6, 1081.

    Article  Google Scholar 

  31. Li, Q., Ning, P., Zheng, L., Huang, J., et al. (2010). Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biology and Technology, 58, 157–165.

    Article  CAS  Google Scholar 

  32. Schmidt, R., Cordovez, V., de Boer, W., et al. (2015). Volatile affairs in microbial interactions. ISME Journal, 9, 2329–2335.

    Article  CAS  Google Scholar 

  33. Viaene, T., Langendries, S., Beirinckx, S., Maes, M., & Goormachtig, S. (2016). Streptomyces as a plant’s best friend? FEMS Microbiology Ecology, 92, 1–10. https://doi.org/10.1093/femsec/fiw119

    Article  CAS  Google Scholar 

  34. Wan, M., Li, G., Zhang, J., Jiang, D., & Huang, H.-C. (2008). Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biological Control, 46, 552–559. https://doi.org/10.1016/j.biocontrol.2008.05.015

    Article  Google Scholar 

  35. Dimkpa, C., Svatos, A., Merten, D., Buchel, G., & Kothe, E. (2008). Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Canadian Journal of Microbiology, 54, 163–172.

    Article  CAS  Google Scholar 

  36. Coombs, J. T., & Franco, C. M. (2003). Isolation and identification of actinobacteria from surface-sterilized wheat roots. Applied and Environment Microbiology, 69(9), 5603–5608. https://doi.org/10.1128/AEM.69.9.5603-5608.2003

    Article  CAS  Google Scholar 

  37. Miller, C. S., Handley, K. M., Wrighton, K. C., Frischkorn, K. R., Thomas, B. C., & Banfield, J. F. (2013). Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS ONE, 8(2), e56018.

    Article  CAS  Google Scholar 

  38. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101, 11030–11035. https://doi.org/10.1073/pnas.0404206101

    Article  CAS  Google Scholar 

  40. Yoon, S. H., Ha, S. M., Lim, J., Kwon, S., & Chun, J. (2017). A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek, 110(10), 1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

  41. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., & Tiedje, J. M. (2007). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 57(Pt 1), 81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez-R, L. M., & Konstantinidis, K. T. (2014). Estimating coverage in metagenomic data sets and why it matters. ISME Journal, 8(11):2349–2351. https://doi.org/10.1038/ismej.2014.76

    Article  Google Scholar 

  43. Sharma, V., & Shanmugam, V. (2012). Purification and characterization of an extracellular 24kDa chitobiosidase from the mycoparasitic fungus Trichoderma saturnisporum. Journal of Basic Microbiology, 52, 324–331. https://doi.org/10.1002/jobm.201100145.IF:2.281

    Article  CAS  PubMed  Google Scholar 

  44. Endo, K., Hayashi, Y., Hibi, T., Hosono, K., Beppu, T., & Ueda, K. (2003). Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. Journal of Biochemistry, 133(5), 671–677. https://doi.org/10.1093/jb/mvg086

    Article  CAS  PubMed  Google Scholar 

  45. Reiss, R., Ihssen, J., & Thöny-Meyer, L. (2011). Bacillus pumilus laccase: A heat stable enzyme with a wide substrate spectrum. BMC Biotechnology, 25(11), 9. https://doi.org/10.1186/1472-6750-11-9

    Article  CAS  Google Scholar 

  46. YunYang, W., YuMin, D., & Tetsuo, M. (2008). Enzymatic catalysis of 2,6-dimethoxyphenol by laccases and products characterization in organic solutions. Science in China, Series B: Chemistry, 51, 669–676. https://doi.org/10.1007/s11426-008-0071-y

    Article  CAS  Google Scholar 

  47. Breslmayr, E., Hanžek, M., Hanrahan, A., Leitner, C., Kittl, R., Šantek, B., Oostenbrink, C., & Ludwig R. (2018). A fast and sensitive activity assay for lytic polysaccharide monooxygenase. Biotechnology for Biofuels, 11, 79. https://doi.org/10.1186/s13068-018-1063-6

    Article  CAS  Google Scholar 

  48. Edens, W. A., Goins, T. Q., Dooley, D., & Henson, J. M. (1999). Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici. Applied and Environmental Microbiology, 65(7), 3071–3074. https://doi.org/10.1128/aem.65.7.3071-3074.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel, R. K., & Jain, M. (2012). NGS QC toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE, 7(2), e30619. https://doi.org/10.1371/journal.,pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., et al. (2008). The RAST server: Rapid annotations using subsystems technology. BMC Genomics, 9, 75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., Olson, R., Overbeek, R., Parrello, B., Pusch, G. D., Shukla, M., Thomason, J. A., 3rd., Stevens, R., Vonstein, V., Wattam, A. R., & Xia, F. (2015). RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Science and Reports, 10(5), 8365. https://doi.org/10.1038/srep08365

    Article  CAS  Google Scholar 

  52. Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A. R., Xia, F., & Stevens, R. (2014). The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Research, 42, D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  53. Bosi, E., Donati, B., Galardini, M., Brunetti, S., Sagot, M. F., Lió, P., Crescenzi, P., Fani, R., & Fondi, M. (2015). MeDuSa: A multi-draft based scaffolder. Bioinformatics, 31(15), 2443–2451. https://doi.org/10.1093/bioinformatics/btv171

    Article  CAS  PubMed  Google Scholar 

  54. Carattoli, A., Zankari, E., García-Fernández, A., et al. (2014). In silico detection and typing of plasmids using Plasmid Finder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903. https://doi.org/10.1128/AAC.02412-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arndt, D., Grant, J., Marcu, A., Sajed, T., Pon, A., Liang, Y., & Wishart, D. S. (2016). PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Research, 8(W1), W16–W21. https://doi.org/10.1093/nar/gkw387

    Article  CAS  Google Scholar 

  56. Carver, T., Thomson, N., Bleasby, A., Berriman, M., & Parkhill, J. (2009). DNAPlotter: Circular and linear interactive genome visualization. Bioinformatics, 25(1), 119–120. https://doi.org/10.1093/bioinformatics/btn578

    Article  CAS  PubMed  Google Scholar 

  57. Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., & Xu, Y. (2012). dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40, W445–W451. https://doi.org/10.1093/nar/gks479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P. K., Xu, Y., & Yin, Y. (2018). dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 46(W1), W95–W101. https://doi.org/10.1093/nar/gky418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., Weber, T. K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., & Weber, T. (2019). antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 47(W1), W81–W87. https://doi.org/10.1093/nar/gkz310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Skinnider, M. A., Merwin, N. J., Johnston, C. W., & Magarvey, N. A. (2017). PRISM 3: Expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Research, 45(W1), W49–W54. https://doi.org/10.1093/nar/gkx320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van Heel, A. J., de Jong, A., Song, C., Viel, J. H., Kok, J., & Kuipers, O. P. (2018). BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Research, 46(W1), W278–W281. https://doi.org/10.1093/nar/gky383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jing, T., Zhou, D., Zhang, M., Yun, T., Qi, D., Wei, Y., Chen, Y., Zang, X., Wang, W., & Xie, J. (2020). Newly isolated Streptomyces sp. JBS5–6 as a potential biocontrol agent to control banana fusarium wilt: genome sequencing and secondary metabolite cluster profiles. Frontiers in Microbiology, 11, 602591. https://doi.org/10.3389/fmicb.2020.602591

    Article  PubMed  PubMed Central  Google Scholar 

  63. Park, H. S., Nah, H. J., Kang, S. H., Choi, S. S., & Kim, E. S. (2021). Screening and isolation of a novel polyene-producing Streptomyces strain inhibiting phytopathogenic fungi in the soil environment. Frontiers in Bioengineering and Biotechnology, 9, 692340. https://doi.org/10.3389/fbioe.2021.692340

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rodriguez-R, L. M., & Konstantinidis, K. T. (2016). The enveomics collection: A toolbox for specialized analyses of microbial genomes and metagenomes. Peer Journal, 4, e1900v1.

    Google Scholar 

  65. Endo, K., Hosono, K., Beppu, T., & Ueda, K. (2002). A novel extracytoplasmic phenol oxidase of Streptomyces: Its possible involvement in the onset of morphogenesis. Microbiology, 148(6), 1767–1776. https://doi.org/10.1099/00221287-148-6-1767

    Article  CAS  PubMed  Google Scholar 

  66. Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K., & Inamori, Y. (2003). A thermostable laccase from Streptomyces lavendulae REN-7: Purification, characterization, nucleotide sequence, and expression. Bioscience Biotechnology Biochemistry, 67(10):2167–2175. https://doi.org/10.1271/bbb.67.2167

    Article  CAS  Google Scholar 

  67. Arias, M. E., Arenas, M., Rodríguez, J., Soliveri, J., Ball, A. S., & Hernández, M. (2003). Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Applied and Environment Microbiology, 69(4), 1953–1958. https://doi.org/10.1128/AEM.69.4.1953-1958.2003

    Article  CAS  Google Scholar 

  68. Niladevi, K. N., Jacob, N., & Prema, P. (2008). Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: Purification and characterization. Process Biochemistry, 43, 654–660. https://doi.org/10.1016/j.procbio.2008.02.002

    Article  CAS  Google Scholar 

  69. Molina-Guijarro, J. M., Pérez, J., Muñoz-Dorado, J., Guillén, F., Moya, R., Herńndez, M., & Arias, M. E. (2009). Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. International Microbiology, 12(1), 13–21. https://doi.org/10.2436/20.1501.01.77

    Article  CAS  PubMed  Google Scholar 

  70. Ferrandi, E. E., Spasic, J., Djokic, L., Vainshtein, Y., Senthamaraikannan, R., Vojnovic, S., & Nikodinovic-Runic, J. (2021). Novel transaminase and laccase from Streptomyces spp. using combined identification approaches. Catalysts, 11(8), 919.

    Article  CAS  Google Scholar 

  71. Gogotya, A., Nnolim, N. E., Digban, T. O., Okoh, A. I., & Nwodo, U. U. (2021). Characterization of a thermostable and solvent-tolerant laccase produced by Streptomyces sp. LAO. Biotechnology Letters, 43(7), 1429–1442.

    Article  CAS  Google Scholar 

  72. Gunne, M., & Urlacher, V. B. (2012). Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. PLoS ONE, 7(12), 1–8. https://doi.org/10.1371/journal.pone.0052360

    Article  CAS  Google Scholar 

  73. Riyadi, F. A., Tahir, A. A., & Nurtasbiyah, Y. (2020). Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 isolated from a tropical environment. Scientific Report, 10, 1–9. https://doi.org/10.1038/s41598-020-64817-4

    Article  CAS  Google Scholar 

  74. Chakravarthi, B., Mathkala, V., & Palempalli, U. M. D. (2021). Degradation and detoxification of Congo Red Azo Dye by immobilized laccase of Streptomyces sviceus. Journal of Pure and Applied Microbiology, 15(2), 864–877.

    Article  Google Scholar 

  75. Popović, N., Stanišić, M., Đurđić, K. I., Prodanović, O., Polović, N., & Prodanović, R. (2021). Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. Environmental Technology and Innovation, 22, 101399.

    Article  Google Scholar 

  76. Rigamonte Fernandes, T. A., da Silveira, W. B., Passos, F. M. L., & Zucchi, T. D. (2013). Characterization of a thermotolerant laccase produced by Streptomyces sp. SB086. Annals of Microbiology, 64, 1363. https://doi.org/10.1007/s13213-013-0781-z

    Article  CAS  Google Scholar 

  77. Cook, R., Hannon, D., Southard, J. N., & Majumdar, S. (2017). Small laccase from streptomyces coelicolor-an ideal model protein/enzyme for undergraduate laboratory experience. Biochemistry and Molecular Biology Education, 46(2), 172–181. https://doi.org/10.1002/bmb.21102

    Article  CAS  PubMed  Google Scholar 

  78. Gunne, M., Höppner, A., Hagedoorn, P. L., & Urlacher, V. B. (2014). Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. FEBS Journal, 281(18), 4307–4318. https://doi.org/10.1111/febs.12755

    Article  CAS  Google Scholar 

  79. Trubitsina, L. I., Tishchenko, S. V., Gabdulkhakov, A. G., Lisov, A. V., & Zakharova, M. V. (2015). Biochimie Structural and functional characterization of two-domain laccase from Streptomyces viridochromogenes. Biochimie. https://doi.org/10.1016/j.biochi.2015.03.005

    Article  PubMed  Google Scholar 

  80. Machczynski, M. C., Vijgenboom, E., Samyn, B., & Canters, G. W. (2004). Characterization of SLAC: A small laccase from Streptomyces coelicolor with unprecedented activity. Protein Science. https://doi.org/10.1110/ps.04759104

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lawton, T. J., Sayavedra-soto, L. A., Arp, D. J., & Rosenzweig, A. C. (2009). Crystal structure of a two-domain multicopper oxidase implications for the evolution of multicopper blue proteins. Journal of Biological Chemistry, 284(15), 10174–10180. https://doi.org/10.1074/jbc.M900179200

    Article  CAS  Google Scholar 

  82. Rouvinen, N. H. J. (2015). Three-dimensional structures of laccases. Cellular and Molecular Life Sciences. https://doi.org/10.1007/s00018-014-1827-5

    Article  PubMed  Google Scholar 

  83. Gosse, J. T., Ghosh, S., Sproule, A., Overy, D., Cheeptham, N., & Boddy, C. N. (2019). Whole genome sequencing and metabolomic study of cave Streptomyces isolates ICC1 and ICC4. Frontiers in Microbiology, 10, 1020.

    Article  Google Scholar 

  84. Zhang, C., Ding, W., Qin, X., & Ju, J. (2019). Genome sequencing of Streptomyces olivaceus SCSIO T05 and activated production of lobophorin CR4 via metabolic engineering and genome mining. Marine Drugs, 17(10), 593.

    Article  CAS  Google Scholar 

  85. Luo, J., Yang, D., Adhikari, A., Dong, L. B., Ye, F., Yan, X., et al. (2021). Discovery of ammosesters by mining the Streptomyces uncialis DCA2648 genome revealing new insight into ammosamide biosynthesis. Journal of Industrial Microbiology and Biotechnology, 48(3–4), kuab027.

    Article  CAS  Google Scholar 

  86. Ding, W., Tu, J., Zhang, H., Wei, X., Ju, J., & Li, Q. (2021). Genome mining and metabolic profiling uncover polycyclic tetramate macrolactams from Streptomyces koyangensis SCSIO 5802. Marine Drugs, 19(8), 440.

    Article  CAS  Google Scholar 

  87. Belknap, K. C., Park, C. J., Barth, B. M., & Andam, C. P. (2020). Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Science and Reports, 10(1), 1–9.

    Article  Google Scholar 

Download references

Funding

This study was funded by Science for Equity, Empowerment and Development Division (SEED), Department of Science and Technology, New Delhi, GOI under the grants no. SP/YO/125/2017 and SEED-TIASN-023-2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richa Salwan or Vivek Sharma.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest in any capacity.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 309 kb)

Supplementary file2 (XLS 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salwan, R., Kaur, R. & Sharma, V. Genomic Organization of Streptomyces flavotricini NGL1 and Streptomyces erythrochromogenes HMS4 Reveals Differential Plant Beneficial Attributes and Laccase Production Capabilities. Mol Biotechnol 64, 447–462 (2022). https://doi.org/10.1007/s12033-021-00424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00424-6

Keywords

Navigation