Skip to main content
Log in

Cloning, Characterization, Expression Analysis, and Agglutination Studies of Novel Gene Encoding β-d-Galactose, N-Acetyl-d-Glucosamine and Lactose-Binding Lectin from Rice Bean (Vigna umbellata)

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lectins are glycoproteins and known for their peculiar carbohydrate-binding activity and their insect-pest-resistant properties. Earlier we have published our research finding on novel gene encoding Bowman–Birk type protease inhibitor with insecticidal properties from rice bean. This paper presents first report on cloning, sequencing, and expression of RbL ORF of 843 bp encoding 280 amino acids long lectin precursor from rice bean (Vigna umbellata) seeds. Blast analysis revealed more than 90% similarity of RbL protein with Vigna aconitifolia and Vigna angularis lectins. Phylogenetic analysis also revealed a close relationship between RbL and other legume lectins. Sequence analysis of genomic DNA revealed intronless nature of RbL gene (GenBank accession No. MT043160). The isolated RbL ORF was expressed in E. coli BL-21(DE3) cells and maximum expression was recorded with 0.5 mM IPTG after 4 h incubation at 37 °C. Western blotting confirmed RbL protein expression in E. coli. Recombinant protein (His6-RbL) of ~ 35 kDa m.wt was purified using Ni-NTA affinity chromatography to the extent of 0.26 mg/ml. In silico analysis characterized RbL protein as acidic, stable, hydrophobic, and secretary protein with one signal peptide cleavage site (A26-A27) and four N-glycosylation sites. Template-based 3D model of RbL was structured using MODELLER tool and validated as good quality model. Structural analysis revealed dominance of β-pleated sheets and β-turns in RbL protein structure. β-d-galactose, N-acetyl-d-glucosamine, and lactose were predicted as putative ligands for RbL protein. Hydrogen bonding and hydrophobic forces were the major interactions between the predicted ligands and RbL protein. Agglutination and agglutination inhibition assays confirmed the binding specificity of RbL protein with the trypsinized rabbit erythrocytes and with the predicted ligands, respectively. Gene ontology analysis functionally annotated RbL protein as a plant defense protein. The novel information generated in the study is not mere pre-experimental findings but could also lay foundation for future research on exploring RbL gene and encoding protein for different biomedical and biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tsaneva, M., & Van Damme, E. J. M. (2020). 130 years of plant lectin research. Glycoconjugate Journal, 37, 533–551.

    CAS  PubMed  Google Scholar 

  2. Peumans, W. J., & Van Damme, E. J. M. (1995). Lectins as plant defense proteins. Plant Physiology, 109, 347–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Vandenborre, G., Smagghe, G., & Van Damme, E. J. M. (2011). Plant lectins as defense proteins against phytophagous insects. Phytochemistry, 72, 1538–1550.

    CAS  PubMed  Google Scholar 

  4. De Hoff, P. L., Brill, L. M., & Hirsch, A. M. (2009). Plant lectins: The ties that bind in root symbiosis and plant defense. Molecular Genetics and Genomics, 282, 1–15.

    PubMed  PubMed Central  Google Scholar 

  5. Gautam, A. K., Sharma, D., Sharma, J., & Saini, K. (2020). Legume lectins: Potential use as a diagnostics and therapeutics against the cancer. International Journal of Biological Macromolecules, 142, 474–483.

    CAS  PubMed  Google Scholar 

  6. Gautam, A. K., Srivastava, N., Sharma, B., & Bhagyawant, S. (2018). Current scenario of legume lectins and their practical applications. Journal of Crop Science and Biotechnology, 21, 217–227.

    Google Scholar 

  7. Tripathi, A., Thakur, N., & Katoch, R. (2018). Studies on lectins from major Vigna species. The Indian Journal of Agricultural Biochemistry, 30, 93–100.

    Google Scholar 

  8. Lagarda-Dias, I., Guzman-Partida, A. M., & Vazquez-Moreno, L. (2017). Legume lectins: Proteins with diverse applications. International Journal of Biological Macromolecules, 18, 1–18.

    Google Scholar 

  9. Hamelryck, T. W., Loris, R., Bouckaert, J., & Wyns, L. (1998). Structural features of the legume lectins. Trends in Glycoscience and Glycotechnology, 10, 349–360.

    CAS  Google Scholar 

  10. Brinda, K. V., Mitra, N., Surolia, A., & Vishveshwara, S. (2004). Determinants of quaternary association in legume lectins. Protein Science, 13, 1735–1749.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Loris, R., Hamelryck, T., Bouckaert, J., & Wyns, L. (1998). Legume lectin structure. Biochimica et Biophysica Acta, 1383, 9–36.

    CAS  PubMed  Google Scholar 

  12. Mishra, A., Behura, A., Mawatwal, S., Kumar, A., Naik, L., Mohanty, S. S., Manna, D., Dokania, P., Mishra, A., Patra, S. K., & Dhiman, R. (2019). Structure-function and application of plant lectins in disease biology and immunity. Food and Chemical Toxicology. https://doi.org/10.1016/j.fct.2019.110827

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ang, A. S. W., Cheung, R. C. F., Dan, X., Chan, Y. S., Pan, W., & Ng, T. B. (2014). Purification and characterization of a glucosamine-binding antifungal lectin from Phaseolus vulgaris cv. Chinese Pinto Beans with antiproliferative activity towards nasopharyngeal carcinoma cells. Applied Biochemistry and Biotechnology, 172, 672–686.

    CAS  PubMed  Google Scholar 

  14. Cavada, B. S., Silva, M. T. L., Osterne, V. J. S., Pinto-Junior, V. R., Machado-do-Nascimento, A. P., Wolin, I. A. V., Heinrich, I. A., Nobre, C. A. S., Moreira, C. G., Lossio, C. F., Rocha, C. R. C., Martins, J. L., Nascimento, K. S., & Leal, R. B. (2017). Canavalia bonariensis lectin: Molecular bases of glycoconjugates interaction and antiglioma potential. International Journal of Biological Macromolecules, 108, 369–378.

    Google Scholar 

  15. Jiang, B., Wang, X., Wang, L., Lv, X., Li, D., Liu, C., & Feng, Z. (2019). Two-step isolation, purification and characterization of lectin from zihua snap bean (Phaseolus vulgaris) seeds. Polymers, 11, 785. https://doi.org/10.3390/polym11050785

    Article  CAS  PubMed Central  Google Scholar 

  16. Lam, S. K., & Ng, T. B. (2010). Isolation and characterization of a French bean hemagglutinin with antitumor, antifungal, and anti-HIV-1 reverse transcriptase activities and an exceptionally high yield. Phytomedicine, 17, 457–462.

    CAS  PubMed  Google Scholar 

  17. Une, S., Nonaka, K., & Akiyama, J. (2018). Lectin isolated from Japanese red sword beans (Canavalia gladiata) as a potential cancer chemopreventive agent. Journal of Food Science, 83, 837–843.

    CAS  PubMed  Google Scholar 

  18. Zhang, J., Shi, X., Shi, J., Ilic, S., Xue, S. J., & Kakuda, Y. (2009). Biological properties and characterization of lectin from red kidney bean (Phaseolus Vulgaris). Food Review International, 25, 1–16.

    Google Scholar 

  19. Lam, S. K., & Ng, T. B. (2011). Lectins: Production and practical applications. Applied Microbiology and Biotechnology, 89(1), 45–55.

    CAS  PubMed  Google Scholar 

  20. Katoch, R. (2013). Nutritional potential of rice bean (Vigna Umbellata): An underutilized legume. Journal of Food Science, 78, C8–C16.

    CAS  PubMed  Google Scholar 

  21. Katoch, R., & Thakur, N. (2012). Insect gut nucleases: A challenge for RNA interference mediated insect control strategies. International Journal of Biochemistry and Biotechnology, 1, 198–203.

    Google Scholar 

  22. Seram, D., Senthil, N., Pandiyan, M., & Kennedy, J. S. (2016). Resistance determination of a South Indian bruchid strain against rice bean landraces of Manipur (India). Journal of Stored Products Research, 69, 199–206.

    Google Scholar 

  23. Katoch, R., Sharma, K., Singh, S. K., & Thakur, N. (2015). Evaluation and characterization of trypsin inhibitor from rice bean with inhibitory activity against gut proteases of Spodoptera litura. Zeitschrift fuer Naturforschung, C: Journal of Biosciences, 70C, 287–295.

    Google Scholar 

  24. Katoch, R., Singh, S. K., Thakur, N., Dutt, S., Yadav, S. K., & Shukle, R. (2014). Cloning, characterization, expression analysis and inhibition studies of a novel gene encoding bowman-birk type protease inhibitor from ricebean. Gene, 546, 342–351.

    CAS  PubMed  Google Scholar 

  25. Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11, 113–116.

    CAS  Google Scholar 

  26. Sambrook, J., & Russel, D. W. (2001). Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  27. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sambrook, J., Fritschi, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  29. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Inoue, H., Nojima, H., & Okayama, H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23–28.

    CAS  PubMed  Google Scholar 

  31. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press.

    Google Scholar 

  32. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., von Brunak, S., Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37, 420–423.

    CAS  PubMed  Google Scholar 

  34. Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305, 567–580.

    CAS  PubMed  Google Scholar 

  35. Gupta, R., Jung, E., & Brunak, S. (2004). Prediction of N-glycosylation sites in human proteins. NetNGlyc 1.0. NetNGlyc website. Retrieved from http://www.cbs.dtu.dk/services/NetNGlyc/

  36. Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, J. K. (2006). Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics, 64, 643–651.

    CAS  Google Scholar 

  37. Buchan, D. W. A., & Jones, D. T. (2019). The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Research, 47(W1), W402–W407.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Laskowski, R. A., Watson, J. D., & Thornton, J. M. (2005). ProFunc: A server for predicting protein function from 3D structure. Nucleic Acids Research, 33, 89–93.

    Google Scholar 

  39. Gabler, F., Nam, S. Z., Till, S., Mirdita, M., Steinegger, M., Söding, J., Lupas, A. N., & Alva, V. (2020). Protein sequence analysis using the MPI bioinformatics toolkit. Current Protocols in Bioinformatics, 72, e108. https://doi.org/10.1002/cpbi.108

    Article  CAS  PubMed  Google Scholar 

  40. Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 5.6.1-5.6.37.

    Google Scholar 

  41. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    CAS  PubMed  Google Scholar 

  42. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    CAS  Google Scholar 

  43. Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.

    CAS  PubMed  Google Scholar 

  44. Colovos, C., & Yeates, T. O. (1993). ERRAT: An empirical atom-based method for validating protein structures. Protein Science, 2, 1511–1519.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.

    PubMed  PubMed Central  Google Scholar 

  46. Berjanskii, M., Liang, Y., Zhou, J., Tang, P., Stothard, P., Zhou, Y., Cruz, J., MacDonell, C., Lin, G., Lu, P., & Wishart, D. S. (2010). PROSESS: A protein structure evaluation suite and server. Nucleic Acids Research, 38, 633–640.

    Google Scholar 

  47. Heo, L., Shin, W. H., Lee, M. S., & Seok, C. (2014). GalaxySite: Ligand-binding-site prediction by using molecular docking. Nucleic Acids Research, 42, W210–W214.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kelley, K. D., Olive, L. Q., Hadziselimovic, A., & Sanders, C. R. (2010). Look and see if it is time to induce protein expression in Escherichia coli cultures. Biochemistry, 49(26), 5405–5407.

    CAS  PubMed  Google Scholar 

  49. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    CAS  PubMed  Google Scholar 

  50. Nogueira, N. A., Grangeiro, M. B., Da Cunha, R. M., Ramos, M. V., Alves, M. A., Teixeira, E. H., Barral-Netto, M., Calvete, J. J., Cavada, B. S., & Grangeiro, T. B. (2002). Expression and purification of the recombinant ConBr (Canavalia brasiliensis lectin) produced in E. coli cells. Protein and Peptide Letters, 9, 59–66.

    CAS  PubMed  Google Scholar 

  51. Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  PubMed  Google Scholar 

  52. Meimeth, T., Marcotte, J., Van, K., Trinn, T., & Clark, E. (1982). Distribution of lectins in tissues, derived callus and roots of Psophocarpus tetragonolobus (winged bean). Plant Physiology, 70, 579–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kurokawa, T., Tsuda, Μ, & Sugino, Υ. (1976). Purification and characterization of lectin from Wistaria floribunda seeds. Journal of Biological Chemistry, 251, 5686–5693.

    CAS  Google Scholar 

  54. Filho, R. M. M., Rossiter, J. G., Cavalcanti Junior, E. A., & Martins, L. S. S. (2017). In Silico comparative analysis of legume lectins. Journal of Genetics and Genome, 1, 1–11.

    Google Scholar 

  55. Lioi, L., Galasso, I., Santantonio, M., Lanave, C., Bollini, R., & Sparvol, F. (2006). Lectin gene sequences and species relationships among cultivated legumes. Genetic Resources and Crop Evolution, 53, 1615–1623.

    CAS  Google Scholar 

  56. Salahuddin, A. (1992). Legume lectins: Homologous proteins with similar structure but distinct carbohydrate binding specificity. Indian Journal of Biochemistry & Biophysics, 29, 388–393.

    CAS  Google Scholar 

  57. Sharon, N., & Lis, H. (1990). Legume lectins: A large family of homologous proteins. The FASEB Journal, 4, 3198–3208.

    CAS  PubMed  Google Scholar 

  58. Singh, R., Tiwari, M., Jagdeesh, H. M., Kansal, R., Gupta, R. N., Koundal, K. R., & Saini, R. (2012). Isolation of lectin gene and development of resistant Nicotiana tabacum L. against Spodoptera litura. Indian Journal of Biotechnology, 11, 143–141.

    Google Scholar 

  59. Qureshi, I. A., Dash, P. K., Srivastava, P. S., & Koundal, K. R. (2007). Isolation and characterization of a lectin gene from seeds of chickpea (Cicer arietinum L.). DNA Sequence, 18, 196–202.

    CAS  PubMed  Google Scholar 

  60. Peumans, W. J., Van Damme, J. M., Barre, A., & Rouge, P. (2001). Classification of plant lectins in families of structurally and evolutionary related proteins. Advances in Experimental Medicine and Biology, 491, 27–54.

    CAS  PubMed  Google Scholar 

  61. Pinto, L. S., Nagano, C. S., Oliveira, T. M., Moura, T. R., Sampaio, A. H., Debray, H., Pinto, V. P., Dellagostin, O. A., & Cavada, B. S. (2008). Purification and molecular cloning of a new galactose-specific lectin from Bauhinia variegata seeds. Journal of Biosciences, 33, 355–363.

    CAS  PubMed  Google Scholar 

  62. Galasso, I., Lioi, L., Lanave, C., Bollini, R., & Sparvoli, F. (2004). Identification and isolation of lectin nucleotide sequences and species relationships in the genus Lens (Miller). TAG. Theoretical and Applied Genetics, 108, 1098–1102.

    CAS  PubMed  Google Scholar 

  63. Chandel, K. P. S., Arora, R. K., & Pant, K. C. (1988). Rice bean- A potential grain legume. NBPGR Scientific Monograph No. 12. NBPGR.

  64. Hua, W., Han, L., & Wang, Z. (2015). Molecular cloning and expression of a novel gene related to legume lectin from Salvia miltiorrhiza Bunge. African Journal of Biotechnology, 14, 2234–2243.

    CAS  Google Scholar 

  65. Zou, M., Guo, B., & He, S. (2011). The roles and evolutionary patterns of intronless genes in Deuterostomes. Comparative and Functional Genomics, 2011, 8.

    Google Scholar 

  66. Yan, H., Dai, X., Feng, K., Ma, Q., & Yin, T. (2016). IGDD: A database of intronless genes in dicots. BMC Bioinformatics, 17, 289. https://doi.org/10.1186/s12859-016-1148-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vodkin, L. O., Rhodes, P. R., & Goldberg, R. B. (1983). A lectin gene insertion has the structural features of a transposable element. Cell, 34, 1023–1031.

    CAS  PubMed  Google Scholar 

  68. Carrington, D. M., Auffret, A., & Hanke, D. E. (1985). Polypeptide ligation occurs during post-translational modification of Concanavalin A. Nature, 313, 64–67.

    CAS  PubMed  Google Scholar 

  69. Min, W., Dunn, A. J., & Jones, D. H. (1992). Non-glycosylated recombinant pro-Concanavalin A is active without polypeptide cleavage. EMBO Journal, 11, 1303–1307.

    CAS  Google Scholar 

  70. Yamauchi, D., & Minamikawa, T. (1990). Structure of the gene encoding Concanavalin A from Canavalia gladiata and its expression in Escherichia coli cells. FEBS Letters, 260, 127–130.

    CAS  PubMed  Google Scholar 

  71. D’Onofrio, M., Lee, M. D., Starr, C. M., Miller, M., & Hanover, J. A. (1991). The gene encoding rat nuclear pore glycoprotein p62 is intronless. Journal of Biological Chemistry, 266, 11980–11985.

    CAS  Google Scholar 

  72. Matagne, A., Joris, B., & Frère, J. M. (1991). Anomalous behaviour of a protein during SDS/PAGE corrected by chemical modification of carboxylic groups. The Biochemical Journal, 280, 553–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rath, A., Glibowicka, M., Nadeau, V., Chen, G., & Deber, C. (2009). Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proceedings of the National Academy of Sciences USA, 106, 1760–1765.

    CAS  Google Scholar 

  74. Rath, A., Cunningham, F., & Deber, C. (2013). Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts. Proceedings of the National Academy of Sciences USA, 110, 15668–15673.

    CAS  Google Scholar 

  75. Gutiérrez-González, M., Farías, C., Tello, S., Pérez-Etcheverry, D., Romero, A., Zúñiga, R., Ribeiro, C. H., Lorenzo-Ferreiro, C., & Molina, M. C. (2019). Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Science and Reports, 9, 16850. https://doi.org/10.1038/s41598-019-53200-7

    Article  CAS  Google Scholar 

  76. Gupta, S. K., & Shukla, P. (2017). Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: A Review. Frontiers in Pharmacology, 8, 419. https://doi.org/10.3389/fphar.2017.00419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tripathi, N. K., & Shrivastava, A. (2019). Recent developments in bioprocessing of recombinant proteins: Expression hosts and process development. Frontiers in Bioengineering and Biotechnology, 7, 420. https://doi.org/10.3389/fbioe.2019.00420

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bhagyawant, S., Bhadkaria, A., Narvekar, D. T., & Srivastava, N. (2019). Multivariate biochemical characterization of rice bean (Vigna umbellata) seeds for nutritional enhancement. Biocatalysis and Agricultural Biotechnology, 20, 101193. https://doi.org/10.1016/j.bcab.2019.101193

    Article  Google Scholar 

  79. Datta, P. K., Basu, P. S., & Datta, T. K. (1988). Purification of human erythrocytes specific lectins from rice bean, Phaseolus calcaratus syn. Vigna umbellata by high-performance liquid chromatography. Journal of Chromatography, 431, 37–44.

    CAS  PubMed  Google Scholar 

  80. Swamy, M. J., Sastry, M. V. K., & Surolia, A. (1985). Prediction and comparison of the secondary structure of legume lectins. Journal of Biosciences, 9, 203–212.

    CAS  Google Scholar 

  81. Mitra, N., Sinha, S., Ramya, T. N. C., & Surolia, A. (2006). N-Linked oligosaccharides as outfitters for glycoprotein folding form and function. Trends in Biochemical Sciences, 31, 156–163.

    CAS  PubMed  Google Scholar 

  82. Sinha, S., & Surolia, A. (2007). Attributes of glycosylation in the establishment of the unfolding pathway of soybean agglutinin. Biophysical Journal, 92, 208–216.

    CAS  PubMed  Google Scholar 

  83. Manochitra, K., & Parija, S. C. (2017). In silico prediction and modeling of the Entamoeba histolytica proteins: Serine-rich Entamoeba histolytica protein and 29 kDa Cysteine-rich protease. Peer Journal, 5, e3160. https://doi.org/10.7717/peerj.3160

    Article  CAS  Google Scholar 

  84. Yadav, B. S., Tripathi, V., Kumar, A., Khan, M. F., Barate, A., Kumar, A., & Sharma, B. (2012). Molecular modeling and docking characterization of Dectin-1 (PAMP) receptor of Bubalus bubalis. Experimental and Molecular Pathology, 92, 7–12.

    CAS  PubMed  Google Scholar 

  85. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2006). The protein data bank, 1999. International tables for crystallography volume F: Crystallography of biological macromolecules (pp. 675–684). Springer.

    Google Scholar 

  86. Gupta, M. K., Vadde, R., Donde, R., Gouda, G., Kumar, J., Nayak, S., Jena, M., & Behera, L. (2019). Insights into the structure–function relationship of Brown Plant Hopper resistance protein, Bph14 of rice plant: A Computational structural biology approach. Journal of Biomolecular Structure & Dynamics, 37, 1649–1665.

    CAS  Google Scholar 

  87. Sefid, F., Rasooli, I., & Jahangiri, A. (2013). In silico determination and validation of Baumannii acinetobactin utilization a structure and ligand binding site. BioMed Research International. https://doi.org/10.1155/2013/172784

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ramos, M. V., Grangeiro, T. B., Cavada, B. S., Shepherd, I., de Melo Lopes, R. O., & Sampaiob, A. H. (2000). Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions. Brazilian Archives of Biology and Technology, 43, 349–359.

    CAS  Google Scholar 

  89. Sharon, N., & Lis, H. (2002). How proteins bind carbohydrates: Lessons from legume lectins. Journal of Agriculture and Food Chemistry, 50, 6586–6591.

    CAS  Google Scholar 

  90. Roberts, D., & Goldstein, I. (1984). Isolation from lima bean lectin of a peptide containing a cysteine residue essential for carbohydrate binding activity. Journal of Biological Chemistry, 259, 909–914.

    CAS  Google Scholar 

  91. Gegg, C. V., Roberts, D. D., Segal, I. H., & Etzler, M. E. (1992). Characterization of the adenine binding sites of two Dolichos biflorus lectins. Biochemistry, 31, 6938–6942.

    CAS  PubMed  Google Scholar 

  92. Srinivas, V. R., Acharya, S., Rawat, S., Sharma, V., & Surolia, A. (2000). The primary structure of the acidic lectin from winged bean (Psophocarpus tetragonolobus): Insights in carbohydrate recognition, adenine binding and quaternary association. FEBS Letters, 474, 76–82.

    CAS  PubMed  Google Scholar 

  93. Shetty, K. N., Latha, V. L., Rameshwaram, N. R., Nadimpalli, S. K., & Suguna, K. (2013). Affinity of a galactose-specific legume lectin from Dolichos lablab to adenine revealed by X-ray cystallography. IUBMB Life, 65, 633–644.

    PubMed  Google Scholar 

  94. Bogoeva, V. P., Radeva, M. A., Atanasova, L. Y., Stoitsova, S. R., & Boteva, R. N. (2004). Fluorescence analysis of hormone binding activities of wheat germ agglutinin. Biochimica et Biophysica Acta, 1698, 213–218.

    CAS  PubMed  Google Scholar 

  95. Cao, Y., Tanaka, K., Nguyen, C. T., & Stacey, G. (2014). Extracellular ATP is a central signaling molecule in plant stress responses. Current Opinion in Plant Biology, 20, 82–87.

    CAS  PubMed  Google Scholar 

  96. Choi, J., Tanaka, K., Cao, Y., Qi, Y., Qiu, J., & Liang, Y. (2014). Identification of a plant receptor for extracellular ATP. Science, 343, 290–294.

    CAS  PubMed  Google Scholar 

  97. Delatorre, P., Rocha, B. A., Souza, E. P., Oliveira, T. M., Bezerra, G. A., Moreno, F. B., Freitas, B. T., Santi-Gadelha, T., Sampaio, A. H., Azevedo, W. F., Jr., & Cavada, B. S. (2007). Structure of a lectin from Canavalia gladiata seeds: New structural insights for old molecules. BMC Structural Biology, 7, 1–9.

    Google Scholar 

Download references

Acknowledgements

We acknowledge Department of Biotechnology, GOI, for providing financial support for the study on rice bean.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Katoch.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Hallan, V. & Katoch, R. Cloning, Characterization, Expression Analysis, and Agglutination Studies of Novel Gene Encoding β-d-Galactose, N-Acetyl-d-Glucosamine and Lactose-Binding Lectin from Rice Bean (Vigna umbellata). Mol Biotechnol 64, 293–310 (2022). https://doi.org/10.1007/s12033-021-00410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00410-y

Keywords

Navigation