Skip to main content

Advertisement

Log in

Benchtop Isolation and Characterisation of Small Extracellular Vesicles from Human Mesenchymal Stem Cells

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs’ size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Seyedi, F., Farsinejad, A., Moshrefi, M., & Nematollahi-Mahani, S. N. (2015). In vitro evaluation of different protocols for the induction of mesenchymal stem cells to insulin-producing cells. Vitro Cellular & Developmental Biology - Animal, 51, 866–878.

    Article  CAS  Google Scholar 

  2. Pashoutan Sarvar, D., Shamsasenjan, K., & Akbarzadehlaleh, P. (2016). Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy. Advanced Pharmaceutical Bulletin, 6, 293–299.

    Article  Google Scholar 

  3. Domouky, A. M., Hegab, A. S., Al-Shahat, A., & Raafat, N. (2017). Mesenchymal stem cells and differentiated insulin producing cells are new horizons for pancreatic regeneration in type I diabetes mellitus. International Journal of Biochemistry and Cell Biology, 87, 77–85.

    Article  CAS  Google Scholar 

  4. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J.-M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., & Bebawy, M. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Anabela Cordeiro-da-Silva. https://doi.org/10.1080/20013078.2018.1535750

    Article  Google Scholar 

  5. Garcia-Contreras, M., Brooks, R. W., Boccuzzi, L., Robbins, P. D., & Ricordi, C. (2017). Exosomes as biomarkers and therapeutic tools for type 1 diabetes mellitus. European Review for Medical and Pharmacological Sciences, 21, 2940–2956.

    CAS  PubMed  Google Scholar 

  6. Pathan, M., Fonseka, P., Chitti, S. V., Kang, T., Sanwlani, R., Van Deun, J., Hendrix, A., & Mathivanan, S. (2019). Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Research, 47, D516–D519.

    Article  CAS  Google Scholar 

  7. Kalra, H., Drummen, G. P. C., & Mathivanan, S. (2016). Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. International Journal of Molecular Sciences, 17, 170.

    Article  Google Scholar 

  8. Libregts, S. F. W. M., Arkesteijn, G. J. A., Németh, A., Nolte-‘t Hoen, E. N. M., & Wauben, M. H. M. (2018). Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest. Journal of Thrombosis and Haemostasis, 16, 1423–1436.

    Article  CAS  Google Scholar 

  9. Venkat, P., Chopp, M., & Chen, J. (2018). Cell-Based and Exosome Therapy in Diabetic Stroke. Stem Cells Translational Medicine, 7, 451–455.

    Article  Google Scholar 

  10. Han, C., Sun, X., Liu, L., Jiang, H., Shen, Y., Xu, X., Li, J., Zhang, G., Huang, J., Lin, Z., Xiong, N., & Wang, T. (2016). Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells International, 2016, 7653489.

    PubMed  Google Scholar 

  11. Newton, W. C., Kim, J. W., Luo, J. Z. Q., & Luo, L. G. (2017). Stem cell-derived exosomes: A novel vector for tissue repair and diabetic therapy. Journal of Molecular Endocrinology, 59, R155–R165.

    Article  CAS  Google Scholar 

  12. Gatti, S., Bruno, S., Deregibus, M. C., Sordi, A., Cantaluppi, V., Tetta, C., & Camussi, G. (2011). Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrology Dialysis Transplantation, 26, 1474–1483.

    Article  CAS  Google Scholar 

  13. Ibrahim, A.G.-E., Cheng, K., & Marbán, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2, 606–619.

    Article  CAS  Google Scholar 

  14. Tan, C., Lai, R., Wong, W., Dan, Y., Lim, S.-K., & Ho, H. (2014). Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Research & Therapy, 5, 76.

    Article  Google Scholar 

  15. Lou, G., Chen, Z., Zheng, M., & Liu, Y. (2017). Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Experimental & Molecular Medicine, 49, e346.

    Article  Google Scholar 

  16. Jayabalan, N., Nair, S., Nuzhat, Z., Rice, G. E., Zuñiga, F. A., Sobrevia, L., Leiva, A., Sanhueza, C., Gutiérrez, J. A., Lappas, M., Freeman, D. J., & Salomon, C. (2017). Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes. Frontiers in Endocrinology, 8, 239.

    Article  Google Scholar 

  17. Li, T., Yan, Y., Wang, B., Qian, H., Zhang, X., Shen, L., Wang, M., Zhou, Y., Zhu, W., Li, W., & Xu, W. (2013). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells and Development, 22, 845–854.

    Article  CAS  Google Scholar 

  18. Lobb, R. J., Becker, M., Wen, S. W., Wong, C. S., Wiegmans, A. P., Leimgruber, A., & Möller, A. (2015). Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles, 4, 27031.

    Article  Google Scholar 

  19. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  Google Scholar 

  20. Yakimchuk, K. (2015). Exosomes: isolation methods and specific markers. Materials and Methods, 5, 1450. https://doi.org/10.13070/mm.en.5.1450

    Article  Google Scholar 

  21. Théry, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology. https://doi.org/10.1002/0471143030.cb0322s30

    Article  PubMed  Google Scholar 

  22. Chew, J. R. J., Chuah, S. J., Teo, K. Y. W., Zhang, S., Lai, R. C., Fu, J. H., Lim, L. P., Lim, S. K., & Toh, W. S. (2019). Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomaterialia, 89, 252–264.

    Article  CAS  Google Scholar 

  23. Chen, Y., Xue, K., Zhang, X., Zheng, Z., & Liu, K. (2018). Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells. Stem Cell Research & Therapy, 9, 318.

    Article  CAS  Google Scholar 

  24. Chen, P., Zheng, L., Wang, Y., Tao, M., Xie, Z., Xia, C., Gu, C., Chen, J., Qiu, P., Mei, S., Ning, L., Shi, Y., Fang, C., Fan, S., & Lin, X. (2019). Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 9, 2439–2459.

    Article  CAS  Google Scholar 

  25. Cosenza, S., Ruiz, M., Toupet, K., Jorgensen, C., & Noël, D. (2017). Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Scientific Reports, 7, 16214.

    Article  Google Scholar 

  26. Zhang, S., Chuah, S. J., Lai, R. C., Hui, J. H. P., Lim, S. K., & Toh, W. S. (2018). MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 156, 16–27.

    Article  CAS  Google Scholar 

  27. Zhu, Y., Wang, Y., Zhao, B., Niu, X., Hu, B., Li, Q., Zhang, J., Ding, J., Chen, Y., & Wang, Y. (2017). Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Research & Therapy, 8, 64.

    Article  Google Scholar 

  28. Wang, R., Xu, B., & Xu, H. (2018). TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle, 17, 2756–2765.

    Article  CAS  Google Scholar 

  29. Liu, X., Yang, Y., Li, Y., Niu, X., Zhao, B., Wang, Y., Bao, C., Xie, Z., Lin, Q., & Zhu, L. (2017). Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale, 9, 4430–4438.

    Article  CAS  Google Scholar 

  30. Wu, J., Kuang, L., Chen, C., Yang, J., Zeng, W.-N., Li, T., Chen, H., Huang, S., Fu, Z., Li, J., Liu, R., Ni, Z., Chen, L., & Yang, L. (2019). miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials, 206, 87–100.

    Article  CAS  Google Scholar 

  31. Tao, S.-C., Yuan, T., Zhang, Y.-L., Yin, W.-J., Guo, S.-C., & Zhang, C.-Q. (2017). Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 7, 180–195.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Ming Medical Sdn. Bhd. Industrial Grant (MING/2019/SOP/001). We would like to appreciate the technical support provided by product specialist from Particle Metrix during NTA data acquisition with ZetaView.

Author information

Authors and Affiliations

Authors

Contributions

JBF, QHDL and YST contributed to the design of the study and interpretation of data. KLT and WCC performed most of the data collection. CWH and PLS assisted in the data collection from Zeta Sizer and NTA. This manuscript is compiled by KLT, JBF and critically revised by YST, QHDL and CWH.

Corresponding authors

Correspondence to Qi Hao Daniel Looi or Jhi Biau Foo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, K.L., Chia, W.C., How, C.W. et al. Benchtop Isolation and Characterisation of Small Extracellular Vesicles from Human Mesenchymal Stem Cells. Mol Biotechnol 63, 780–791 (2021). https://doi.org/10.1007/s12033-021-00339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00339-2

Keywords

Navigation