Skip to main content
Log in

Alternative Heterologous Expression of l-Arabinose Isomerase from Enterococcus faecium DBFIQ E36 By Residual Whey Lactose Induction

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This study reports an alternative strategy for the expression of a recombinant l-AI from Enterococcus faecium DBFIQ E36 by auto-induction using glucose and glycerol as carbon sources and residual whey lactose as inducer agent. Commercial lactose and isopropyl β-d-1-thiogalactopyranoside (IPTG) were also evaluated as inducers for comparison of enzyme expression levels. The enzymatic extracts were purified by affinity chromatography, characterized, and applied in the bioconversion of d-galactose into d-tagatose. l-AI presented a catalytic activity of 1.67 ± 0.14, 1.52 ± 0.01, and 0.7 ± 0.04 U/mL, when expressed using commercial lactose, lactose from whey, and IPTG, respectively. Higher activities could be obtained by changing the protocol of enzyme extraction and, for instance, the enzymatic extract produced with whey presented a catalytic activity of 3.8 U/mL. The specific activity of the enzyme extracts produced using lactose (commercial or residual whey) after enzyme purification was also higher when compared to the enzyme expressed with IPTG. Best results were achieved when enzyme expression was conducted using 4 g/L of residual whey lactose for 11 h. These results proved the efficacy of an alternative and economic protocol for the effective expression of a recombinant l-AI aiming its high-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roy, S., Chikkerur, J., Roy, S. C., Dhali, A., Kolte, A. P., Sridhar, M., & Samanta, A. K. (2018). Tagatose as a potential nutraceutical: Production, properties, biological roles, and applications. Journal of Food Science, 83(11), 2699–2709. https://doi.org/10.1111/1750-3841.14358.

    Article  CAS  PubMed  Google Scholar 

  2. Guerrero-Wyss, M., Durán Agüero, S., & Angarita Dávila, L. (2018). d-Tagatose is a promising sweetener to control glycaemia: A new functional food. BioMed Research International. https://doi.org/10.1155/2018/8718053.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mogha, K. V., Chaudhari, A. R., & Aparnathi, K. D. (2016). Tagatose: A low calorie multifunctional sweetener. Research and Reviews: Journal of Dairy Science and Technology, 5(3), 29–35.

    CAS  Google Scholar 

  4. Patra, F., Tomar, S. K., & Arora, S. (2009). Technological and functional applications of low-calorie sweeteners from lactic acid bacteria. Journal of Food Science, 74(1), 16–23. https://doi.org/10.1111/j.1750-3841.2008.01005.x.

    Article  CAS  Google Scholar 

  5. Lu, Y., Levin, G. V., & Donner, T. W. (2008). Tagatose, a new antidiabetic and obesity control drug. Diabetes, Obesity and Metabolism, 10(2), 109–134. https://doi.org/10.1111/j.1463-1326.2007.00799.x.

    Article  CAS  PubMed  Google Scholar 

  6. Donner, T. W., Magder, L. S., & Zarbalian, K. (2010). Dietary supplementation with d-tagatose in subjects with type 2 diabetes leads to weight loss and raises high-density lipoprotein cholesterol. Nutrition Research, 30(12), 801–806. https://doi.org/10.1016/j.nutres.2010.09.007.

    Article  CAS  PubMed  Google Scholar 

  7. Levin, G. V. (2002). Tagatose, the new GRAS sweetener and health product. Journal of Medicinal Food, 5(1), 23–36. https://doi.org/10.1089/109662002753723197.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, P. (2004). Current studies on biological tagatose production using l-arabinose isomerase: A review and future perspective. Applied Microbiology and Biotechnology, 65(3), 243–249. https://doi.org/10.1007/s00253-004-1665-8.

    Article  CAS  PubMed  Google Scholar 

  9. Mei, W., Wang, L., Zang, Y., Zheng, Z., & Ouyang, J. (2016). Characterization of an l-arabinose isomerase from Bacillus coagulans NL01 and its application for d-tagatose production. BMC Biotechnology. https://doi.org/10.1186/s12896-016-0286-5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yoon, S., Kim, P., & Oh, D. (2003). Properties of l-arabinose isomerase from Escherichia coli as biocatalyst for tagatose production. World Journal of Microbiology and Biotechnology, 19(1), 47–51. https://doi.org/10.1023/A:1022575601492.

    Article  CAS  Google Scholar 

  11. Xu, Z., Qing, Y., Li, S., Feng, X., Xu, H., & Ouyang, P. (2011). A novel l-arabinose isomerase from Lactobacillus fermentum CGMCC2921 for d-tagatose production: Gene cloning, purification and characterization. Journal of Molecular Catalysis B: Enzymatic, 70(1–2), 1–7. https://doi.org/10.1016/j.molcatb.2011.01.010.

    Article  CAS  Google Scholar 

  12. Manzo, R. M., Antunes, A. S. L. M., de Sousa Mendes, J., Hissa, D. C., Gonҫalves, L. R. B., & Mammarella, E. J. (2019). Biochemical characterization of heat-tolerant recombinant l-arabinose isomerase from Enterococcus faecium DBFIQ E36 strain with feasible applications in d-tagatose production. Molecular Biotechnology, 61(6), 385–399. https://doi.org/10.1007/s12033-019-00161-x.

    Article  CAS  PubMed  Google Scholar 

  13. Men, Y., Zhu, Y., Zhang, L., Kang, Z., Izumori, K., & Sun, Y. (2014). Enzymatic conversion of d-galactose to d-tagatose: Cloning, overexpression and characterization of L-arabinose isomerase from Pediococcus pentosaceus PC-5. Microbiological Research, 169(2–3), 171–178. https://doi.org/10.1016/j.micres.2013.07.001.

    Article  CAS  PubMed  Google Scholar 

  14. Liang, M., Chen, M., Liu, X., Zhai, Y., Liu, X., Zhang, H., et al. (2012). Bioconversion of d-galactose to d-tagatose: Continuous packed bed reaction with an immobilized thermostable l-arabinose isomerase and efficient purification by selective microbial degradation. Applied Microbiology and Biotechnology, 93(4), 1469–1474. https://doi.org/10.1007/s00253-011-3638-z.

    Article  CAS  PubMed  Google Scholar 

  15. Hung, X. G., Tseng, W. C., Liu, S. M., Tzou, W. S., & Fang, T. Y. (2014). Characterization of a thermophilic l-arabinose isomerase from Thermoanaerobacterium saccharolyticum NTOU1. Biochemical Engineering Journal, 83, 121–128. https://doi.org/10.1016/j.bej.2013.04.026.

    Article  CAS  Google Scholar 

  16. Holsbeeck, M. V., Tsakali, E., Syryn, E., Aerts, G., Impe, J. V., Voorde, I. V., & De. . (2014). Overexpression of l-arabinose isomerase for production of the low-calorie bulk sweetener d-tagatose. Enzyme Engineering, 4(1), 1–6. https://doi.org/10.4172/2329-6674.1000125.

    Article  CAS  Google Scholar 

  17. Xu, W., Fan, C., Zhang, T., Jiang, B., & Mu, W. (2016). Cloning, expression, and characterization of a novel l-arabinose isomerase from the psychrotolerant bacterium Pseudoalteromonas haloplanktis. Molecular Biotechnology, 58(11), 695–706. https://doi.org/10.1007/s12033-016-9969-3.

    Article  CAS  PubMed  Google Scholar 

  18. Machado, R., Azevedo-Silva, J., Correia, C., Collins, T., Arias, F. J., Rodríguez-Cabello, J. C., & Casal, M. (2013). High level expression and facile purification of recombinant silk-elastin-like polymers in auto induction shake flask cultures. AMB Express, 3(1), 11. https://doi.org/10.1186/2191-0855-3-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rhimi, M., Ilhammami, R., Bajic, G., Boudebbouze, S., Maguin, E., Haser, R., & Aghajari, N. (2010). Bioresource technology the acid tolerant l-arabinose isomerase from the food grade Lactobacillus sakei 23K is an attractive d-tagatose producer. Bioresource Technology, 101(23), 9171–9177. https://doi.org/10.1016/j.biortech.2010.07.036.

    Article  CAS  PubMed  Google Scholar 

  20. Crowley, E. L., & Rafferty, S. P. (2019). Review of lactose-driven auto-induction expression of isotope-labelled proteins. Protein Expression and Purification, 157(January), 70–85. https://doi.org/10.1016/j.pep.2019.01.007.

    Article  CAS  PubMed  Google Scholar 

  21. Marbach, A., & Bettenbrock, K. (2012). lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA. Journal of Biotechnology, 157(1), 82–88. https://doi.org/10.1016/j.jbiotec.2011.10.009.

    Article  CAS  PubMed  Google Scholar 

  22. Studier, F. W. (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, 41(1), 207–234. https://doi.org/10.1016/j.pep.2005.01.016.

    Article  CAS  PubMed  Google Scholar 

  23. Dvorak, P., Chrast, L., Nikel, P. I., Fedr, R., Soucek, K., Sedlackova, M., et al. (2015). Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21 ( DE3) carrying a synthetic metabolic pathway. Microbial Cell Factories. https://doi.org/10.1186/s12934-015-0393-3.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Malakar, P., & Venkatesh, K. V. (2012). Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of lac proteins. Applied Microbiology and Biotechnology, 93(6), 2543–2549. https://doi.org/10.1007/s00253-011-3642-3.

    Article  CAS  PubMed  Google Scholar 

  25. Blommel, P. G., Becker, K. J., Duvnjak, P., & Fox, B. G. (2008). Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnology Progress, 23(3), 585–598. https://doi.org/10.1021/bp070011x.

    Article  CAS  Google Scholar 

  26. Briand, L., Marcion, G., Kriznik, A., Heydel, J. M., Artur, Y., Garrido, C., et al. (2016). A self-inducible heterologous protein expression system in Escherichia coli. Scientific Reports, 6(33037), 1–11. https://doi.org/10.1038/srep33037.

    Article  CAS  Google Scholar 

  27. Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnology Advances, 28(3), 375–384. https://doi.org/10.1016/j.biotechadv.2010.02.002.

    Article  CAS  PubMed  Google Scholar 

  28. Vamvakaki, A. N., Kandarakis, I., Kaminarides, S., Komaitis, M., & Papanikolaou, S. (2010). Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Engineering in Life Sciences, 10(4), 348–360. https://doi.org/10.1002/elsc.201000063.

    Article  CAS  Google Scholar 

  29. Viitanen, M. I., Vasala, A., Neubauer, P., & Alatossava, T. (2003). Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli. Microbial Cell Factories, 2(1), 2. https://doi.org/10.1186/1475-2859-2-2.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Manzo, R. M., Simonetta, A. C., Rubiolo, A. C., & Mammarella, E. J. (2013). Screening and selection of wild strains for l-arabinose isomerase production. Brazilian Journal of Chemical Engineering, 30(4), 711–720. https://doi.org/10.1590/S0104-66322013000400003.

    Article  CAS  Google Scholar 

  31. Albuquerque, T. L., D’Almeida, A. P., Gomes, S. D. L., Fernandez-Lafuente, R., Gonçalves, L. R. B., & Rocha, M. V. P. (2018). Immobilization of β-galactosidase in glutaraldehyde-chitosan and its application to the synthesis of lactulose using cheese whey as feedstock. Process Biochemistry, 73, 65–73. https://doi.org/10.1016/j.procbio.2018.08.010.

    Article  CAS  Google Scholar 

  32. Lima, A. F., Cavalcante, K. F., de Freitas, M., Rodrigues, T. H. S., Rocha, M. V. P., & Gonçalves, L. R. B. (2013). Comparative biochemical characterization of soluble and chitosan immobilized β-galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochemistry, 48(3), 443–452. https://doi.org/10.1016/j.procbio.2013.02.002.

    Article  CAS  Google Scholar 

  33. Dische, Z., & Borenfreund, E. (1951). A new spectrophotometric method for the detection and determination of keto sugars and trioses. Journal of Biological Chemistry, 192, 583–587.

    Article  CAS  Google Scholar 

  34. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  35. Schägger, H., & Von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.

    Article  Google Scholar 

  36. Fogler, H. S. (2009). Elementos de Engenharia das Reações Químicas (4th ed.). Rio de Janeiro: LTC: Livros Técnicos e Científicos Editora S.A.

    Google Scholar 

  37. Maier, U., & Büchs, J. (2001). Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochemical Engineering Journal, 7(2), 99–106. https://doi.org/10.1016/S1369-703X(00)00107-8.

    Article  CAS  PubMed  Google Scholar 

  38. Sousa, M. D., Manzo, R. M., Garc, L., Mammarella, E. J., Gonçalves, L. R. B., & Pessela, B. C. (2017). Engineering the l-arabinose isomerase from Enterococcus faecium for d-tagatose synthesis. Molecules, 22, 2164–2177. https://doi.org/10.3390/molecules22122164.

    Article  CAS  PubMed Central  Google Scholar 

  39. Cheng, L., Mu, W., & Jiang, B. (2010). Thermostable l-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for d-tagatose production: Gene cloning, purification and characterisation. Journal of the Science of Food and Agriculture, 90(8), 1327–1333. https://doi.org/10.1002/jsfa.3938.

    Article  CAS  PubMed  Google Scholar 

  40. Salonen, N., Salonen, K., Leisola, M., & Nyyssölä, A. (2013). D-Tagatose production in the presence of borate by resting Lactococcus lactis cells harboring Bifidobacterium longuml-arabinose isomerase. Bioprocess and Biosystems Engineering, 36(4), 489–497. https://doi.org/10.1007/s00449-012-0805-2.

    Article  CAS  PubMed  Google Scholar 

  41. de Sousa, M., Silva Gurgel, B., Pessela, B. C., & Gonçalves, L. R. B. (2020). Preparation of CLEAs and magnetic CLEAs of a recombinant l-arabinose isomerase for d-tagatose synthesis. Enzyme and Microbial Technology. https://doi.org/10.1016/j.enzmictec.2020.109566.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian Research Agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denise Cavalcante Hissa or Luciana R. B. Gonçalves.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

All authors approved the manuscript and this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, T.C., Oliveira, R.C., Bezerra, S.G.S. et al. Alternative Heterologous Expression of l-Arabinose Isomerase from Enterococcus faecium DBFIQ E36 By Residual Whey Lactose Induction. Mol Biotechnol 63, 289–304 (2021). https://doi.org/10.1007/s12033-021-00301-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00301-2

Keywords

Navigation