Skip to main content
Log in

A Graft Mimic Strategy for Verticillium Resistance in Tomato

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Grafting vegetables for disease resistance has increased greatly in popularity over the past 10 years. Verticillium wilt of tomato is commonly controlled through grafting of commercial varieties on resistant rootstocks expressing the Ve1 R-gene. To mimic the grafted plant, proteomic analyses in tomato were used to identify a suitable root-specific promoter (TMVi), which was used to express the Ve1-allele in susceptible Craigella (Cs) tomato plants. The results indicate that when infected with Verticillim dahliae, race 1, the transformed plants are comparable to resistant cultivars (Cr) or grafted plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rivard, C. L., & Louws, F. J. (2011) Tomato grafting: A new tool for disease resistance and increased productivity. North Carolina: SARE Ag Innovation Bulletin Series.

  2. Diwan, N., Fluhr, R., Eshed, Y., Zamir, D., & Tanksley, S. D. (1999). Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae Kleb. race 1. Theoretical and Applied Genetics, 98, 315–319.

    Article  CAS  Google Scholar 

  3. Schaible, L., Cannon, O. S., & Waddoups, V. (1951). Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology, 41, 986–990.

    Google Scholar 

  4. Xue, G.-P., Rae, A. L., White, R. G., Drenth, J., Richardson, T., & McIntyre, C. L. (2016). A strong root-specific expression system for stable transgene expression in bread wheat. Plant Cell Reports, 35, 469–481.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, P., Lee, B., & Robb, J. (2004). Tolerance to a non-host isolate of Verticillium dahliae in tomato. Physiological and Molecular Plant Pathology, 64, 283–291.

    Article  CAS  Google Scholar 

  6. Robb, E. J., Shittu, H. O., Soman, K. V., Kurosky, A., & Nazar, R. N. (2012). Elevated defense protein fails to protect tomato against Verticillium dahliae. Planta, 236, 623–633.

    Article  CAS  PubMed  Google Scholar 

  7. Dobinson, K. F., Tenuta, G. K., & Lazarovits, G. (1996). Occurrence of race 2 of Verticillium dahliae in processing fields in southwestern Ontario. Canadian Journal of Plant Pathology, 18, 55–58.

    Article  Google Scholar 

  8. Shittu, H. O., Castroverde, C. D. M., Nazar, R. N., & Robb, J. (2009). Plant-endophyte interplay protects tomato against a virulent Verticillium. Planta, 229, 415–426.

    Article  CAS  PubMed  Google Scholar 

  9. Robb, J., Castroverde, C. D. M., Shittu, H. O., & Nazar, R. N. (2009). Patterns of defence gene expression in the tomato-Verticillium interaction. Botany, 87, 993–1006.

    Article  CAS  Google Scholar 

  10. Hu, X., Nazar, R. N., & Robb, J. (1993). Quantification of Verticillium biomass in wilt disease development. Physiological and Molecular Plant Pathology, 42, 23–36.

    Article  CAS  Google Scholar 

  11. Castroverde, C. D. M., Xu, X., Blaya Fernandez, J., Nazar, R. N., & Robb, J. (2017). Epistatic influence in tomato ve1-mediated resistance. Plant Biology, 19, 843–847.

    Article  CAS  PubMed  Google Scholar 

  12. McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., & Fraley, R. (1986). Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Reports, 5, 81–84.

    Article  CAS  PubMed  Google Scholar 

  13. Robb, J., Lee, B., & Nazar, R. N. (2007). Gene suppression in a tolerant tomato-vascular pathogen interaction. Planta, 226, 299–309.

    Article  CAS  PubMed  Google Scholar 

  14. Tsai, S. J., & Wiltbank, M. C. (1996). Quantification of mRNA using competitive RT-PCR with standard-curve methodology. BioTechniques, 21, 862–866.

    Article  CAS  PubMed  Google Scholar 

  15. Hurkman, W. J., & Tanaka, C. K. (1986). Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiology, 81, 802–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pichersky, E., Bernatzky, R., Tanksley, S. D., Cashmore, A. R. (1986) Evidence for selection as a mechanism in the concerted evolution of Lycopersicon esculentum (tomato) genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 83, 3880–3884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sugita, M., Manzara, T., Pichersky, E., Cashmore, A., & Gruissem, W. (1987). Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase from tomato. Molecular and General Genetics, 209, 247–256.

    Article  CAS  PubMed  Google Scholar 

  18. Fradin, E. F., Zhang, Z., Juarez-Ayala, J. C., Castroverde, C. D. M., Nazar, R. N., Robb, J., Liu, C.-M., & Thomma, B. P. H. J. (2009). Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiology, 150, 320–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nazar, R., Xu, X., Blaya Fernandez, J., Shittu, H. O., Kurosky, A., & Robb, E. J. (2018) Defence cascade in Verticillium-infected grafted tomato. Plant Signaling Behavior. https://doi.org/10.1080/15592324.2018.1475807.

    Article  PubMed  Google Scholar 

  20. Shin, R., An, J. M., Park, C. J., Kim, Y. J., Joo, S., Kim, W. T., & Paek, K.H. (2004). Capsicum annuum tobacco mosaic virus-induced clone 1 expression perturbation alters the plant’s response to ethylene and interferes with the redox homeostasis. The Plant Journal, 37, 186–198.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. X. Luo and K.V. Soman (UTMB Proteomics Center) for the peptide mass spectrometry and help with the proteomic analyses. This study was supported by NSERC Canada (R.N.N. and E.J.R.) and NIH, NHLBI (A.K.).

Author information

Authors and Affiliations

Authors

Contributions

RNN and JR conceived the experiments and prepared the manuscript, MM conducted the experiments. RNN conducted the data analyses and AK was responsible for the peptide mass spectrometry.

Corresponding author

Correspondence to Ross N. Nazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackey, M., Kurosky, A., Robb, E.J. et al. A Graft Mimic Strategy for Verticillium Resistance in Tomato. Mol Biotechnol 60, 665–669 (2018). https://doi.org/10.1007/s12033-018-0101-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0101-8

Keywords

Navigation