Skip to main content

Advertisement

Log in

Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Hemicellulose biomass is a complex polymer with many different chemical constituents that can be utilized as industrial feedstocks. These molecules can be released from the polymer and transformed into value-added chemicals through multistep enzymatic pathways. Some bacteria produce cellulosomes which are assemblies composed of lignocellulolytic enzymes tethered to a large protein scaffold. Rosettasomes are artificial engineered ring scaffolds designed to mimic the bacterial cellulosome. Both cellulosomes and rosettasomes have been shown to facilitate much higher rates of biomass hydrolysis compared to the same enzymes free in solution. We investigated whether tethering enzymes involved in both biomass hydrolysis and oxidative transformation to glucaric acid onto a rosettasome scaffold would result in an analogous production enhancement in a combined hydrolysis and bioconversion metabolic pathway. Three different enzymes were used to hydrolyze birchwood hemicellulose and convert the substituents to glucaric acid, a top-12 DOE value added chemical feedstock derived from biomass. It was demonstrated that colocalizing the three different enzymes to the synthetic scaffold resulted in up to 40 % higher levels of product compared to uncomplexed enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adsul, M. G., Singhvi, M. S., Gaikaiwari, S. A., & Gokhale, D. V. (2011). Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresource Technology, 102, 4304–4312.

    Article  CAS  Google Scholar 

  2. Jordan, D. B., Bowman, M. J., Braker, J. D., Dien, B. S., Hector, R. E., Lee, C. C., et al. (2012). Plant cell walls to ethanol. Biochemical Journal, 442, 241–252.

    Article  CAS  Google Scholar 

  3. Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of biomass: deriving more value from waste. Science, 337, 695–699.

    Article  CAS  Google Scholar 

  4. Juturu, V., & Wu, J. C. (2012). Microbial xylanases: engineering, production and industrial applications. Biotechnology Advances, 30, 1219–1227.

    Article  CAS  Google Scholar 

  5. Lagaert, S., Pollet, A., Courtin, C. M., & Volckaert, G. (2014). β-Xylosidases and α-l-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnology Advances, 32, 316–332.

    Article  CAS  Google Scholar 

  6. Zhang, Z., Donaldson, A. A., & Ma, X. (2012). Advancements and future directions in enzyme technology for biomass conversion. Biotechnology Advances, 30, 913–919.

    Article  CAS  Google Scholar 

  7. Numan, M. T., & Bhosle, N. B. (2006). α-l-arabinofuranosidases: the potential applications in biotechnology. Journal of Industrial Microbiology and Biotechnology, 33, 247–260.

    Article  CAS  Google Scholar 

  8. Poutanen, K., Tenkanen, M., Korte, H., & Puls, J. (1991). Accessory enzymes involved in the hydrolysis of xylans. In G. F. Leatham & M. E. Himmel (Eds.), Enzymes in biomass conversion (pp. 426–436). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  9. Buchala, A. J., & Wilkie, K. C. B. (1973). Total hemicelluloses from wheat at different stages of growth. Phytochemistry, 12, 499–505.

    Article  CAS  Google Scholar 

  10. Buchala, A. J., & Wilkie, K. C. B. (1974). Total hemicelluloses from Hordeum vulgare plants at different stages of maturity. Phytochemistry, 13, 1347–1351.

    Article  CAS  Google Scholar 

  11. Darvill, J. E., McNeil, M., Darvill, A. G., & Albersheim, P. (1980). Structure of plant cell walls: XI. Glucuronoarabinoxylan, a second hemicellulose in the primary cell walls of suspension-cultured sycamore cells. Plant Physiology, 66, 1135–1139.

    Article  CAS  Google Scholar 

  12. Zhong, R., Pena, M. J., Zhou, G. K., Nairn, C. J., Wood-Jones, A., Richardson, E. A., et al. (2005). Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell, 17, 3390–3408.

    Article  CAS  Google Scholar 

  13. de Wet, B. J. M., & Prior, B. A. (2004). Microbial a-glucuronidases. In B. C. Saha & K. Hayashi (Eds.), Lignocellulose Biodegradation (pp. 241–254). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  14. Wagschal, K., Jordan, D. B., Lee, C. C., Younger, A., Braker, J. D., & Chan, V. J. (2015). Biochemical characterization of uronate dehydrogenases from three Pseudomonads, Chromohalobacter salixigens, and Polaromonas naphthalenivorans. Enyzme and Microbial Technology, 69, 62–68.

    Article  CAS  Google Scholar 

  15. Boer, H., Maaheimo, H., Koivula, A., Penttila, M., & Richard, P. (2010). Identification in Agrobacterium tumefaciens of the d-galacturonic acid dehydrogenase gene. Applied Microbiology and Biotechnology, 86, 901–909.

    Article  CAS  Google Scholar 

  16. Werpy, T., & Peterson, G. (2004). Top value added chemicals from biomass volume I—results of screening for potential candidates from sugars and synthesis gas. Oak Ridge, TN: US Department of Energy. http://www.nrel.gov/docs/fy04osti/35523.pdf.

  17. Heerdt, A. S., Young, C. W., & Borgen, P. I. (1995). Calcium glucarate as a chemopreventive agent in breast cancer. Israel Journal of Medical Sciences, 31, 101–105.

    CAS  Google Scholar 

  18. Kiely, D. E., Chen, L., & Lin, T. H. (2000). Synthetic polyhydroxypolyamides from galactaric, xylaric, d-glucaric, and d-mannaric acids and alkylenediamine monomers—some comparisons. Journal of Polymer Science Polymer Chemistry, 38, 594–603.

    Article  CAS  Google Scholar 

  19. Walaszek, Z., Hanausek, M., Narog, M., Raich, P. C., & Slaga, T. J. (2004). Mechanisms of lung cancer chemoprevention by d-glucarate. Chest, 125, 149S–150S.

    Article  Google Scholar 

  20. Moon, T. S., Yoon, S. H., Lanza, A. M., Roy-Mayhew, J. D., & Prather, K. L. (2009). Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Applied and Environment Microbiology, 75, 589–595.

    Article  CAS  Google Scholar 

  21. Dueber, J. E., Wu, G. C., Malmirchegini, G. R., Moon, T. S., Petzold, C. J., Ullal, A. V., et al. (2009). Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnology, 27, 753–759.

    Article  CAS  Google Scholar 

  22. Moon, T. S., Dueber, J. E., Shiue, E., & Prather, K. L. (2010). Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metabolic Engineering, 12, 298–305.

    Article  CAS  Google Scholar 

  23. Bayer, E. A., Belaich, J. P., Shoham, Y., & Lamed, R. (2004). The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiology, 58, 521–554.

    Article  CAS  Google Scholar 

  24. Fontes, C. M., & Gilbert, H. J. (2010). Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual Review of Biochemistry, 79, 655–681.

    Article  CAS  Google Scholar 

  25. Carvalho, A. L., Dias, F. M., Prates, J. A., Nagy, T., Gilbert, H. J., Davies, G. J., et al. (2003). Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex. Proceedings of the National Academy of Sciences USA, 100, 13809–13814.

    Article  CAS  Google Scholar 

  26. Schaeffer, F., Matuschek, M., Guglielmi, G., Miras, I., Alzari, P. M., & Beguin, P. (2002). Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. Biochemistry, 41, 2106–2114.

    Article  CAS  Google Scholar 

  27. Bhat, S., Goodenough, P. W., Bhat, M. K., & Owen, E. (1994). Isolation of four major subunits from Clostridium thermocellum cellulosome and their synergism in the hydrolysis of crystalline cellulose. International Journal of Biological Macromolecules, 16, 335–342.

    Article  CAS  Google Scholar 

  28. Borne, R., Bayer, E. A., Pagès, S., Perret, S., & Fierobe, H. P. (2013). Unraveling enzyme discrimination during cellulosome assembly independent of cohesin–dockerin affinity. FEBS Journal, 280, 5764–5779.

    Article  CAS  Google Scholar 

  29. Fierobe, H. P., Mechaly, A., Tardif, C., Belaich, A., Lamed, R., Shoham, Y., et al. (2001). Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. Journal of Biological Chemistry, 276, 21257–21261.

    Article  CAS  Google Scholar 

  30. Fierobe, H. P., Mingardon, F., Mechaly, A., Belaich, A., Rincon, M. T., Pages, S., et al. (2005). Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. Journal of Biological Chemistry, 280, 16325–16334.

    Article  CAS  Google Scholar 

  31. McClendon, S. D., Mao, Z., Shin, H. D., Wagschal, K., & Chen, R. R. (2012). Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis. Applied Biochemistry and Biotechnology, 167, 395–411.

    Article  CAS  Google Scholar 

  32. Morais, S., Morag, E., Barak, Y., Goldman, D., Hadar, Y., Lamed, R., et al. (2012). Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. mBio, 3(6), e00508–12. doi:10.1128/mBio.00508-12.

    Article  CAS  Google Scholar 

  33. Vazana, Y., Barak, Y., Unger, T., Peleg, Y., Shamshoum, M., Ben-Yehezkel, T., et al. (2013). A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnology for Biofuels, 6, 182.

    Article  Google Scholar 

  34. Mitsuzawa, S., Kagawa, H., Li, Y., Chan, S. L., Paavola, C. D., & Trent, J. D. (2009). The rosettazyme: a synthetic cellulosome. Journal of Biotechnology, 143, 139–144.

    Article  CAS  Google Scholar 

  35. Paavola, C. D., Chan, S. L., Li, Y., Mazzarella, K. M., McMillan, R. A., & Trent, J. D. (2006). A versatile platform for nanotechnology based on circular permutation of a chaperonin protein. Nanotechnology, 17, 1171–1176.

    Article  CAS  Google Scholar 

  36. Mishra, S., Beguin, P., & Aubert, J. P. (1991). Transcription of Clostridium thermocellum endoglucanase genes celF and celD. Journal of Bacteriology, 173, 80–85.

    CAS  Google Scholar 

  37. Lee, C. C., Smith, M., Kibblewhite-Accinelli, R. E., Williams, T. G., Wagschal, K., Robertson, G. H., & Wong, D. W. (2006). Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Current Microbiology, 52, 112–116.

    Article  CAS  Google Scholar 

  38. Lee, C. C., Kibblewhite, R. E., Wagschal, K., Li, R., & Orts, W. J. (2012). Isolation of α-glucuronidase enzyme from a rumen metagenomic library. Protein Journal, 31, 206–211.

    Article  CAS  Google Scholar 

  39. Studier, F. W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Expression and Purification, 41, 207–234.

    Article  CAS  Google Scholar 

  40. Milner, Y., & Avigad, G. (1967). A copper reagent for the determination of hexuronic acids and certain ketohexoses. Carbohydrate Research, 4, 359–361.

    Article  CAS  Google Scholar 

  41. Pell, G., Taylor, E. J., Gloster, T. M., Turkenburg, J. P., Fontes, C. M., Ferreira, L. M., et al. (2004). The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. Journal of Biological Chemistry, 279, 9597–9605.

    Article  CAS  Google Scholar 

  42. Kamat, R. K., Ma, W., Yang, Y., Zhang, Y., Wang, C., Kumar, C. V., & Lin, Y. (2013). Adsorption and hydrolytic activity of the polycatalytic cellulase nanocomplex on cellulose. ACS Appl Mater Interfaces, 5, 8486–8494.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bruce Mackey and Linda Whitehand for consultations on the statistical design of the experiments. This work was supported by the United States Department of Agriculture (CRIS 2030-41000-054-00) and National Institute of Food and Agriculture (Grant 2012-03998). The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.C., Kibblewhite, R.E., Paavola, C.D. et al. Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies. Mol Biotechnol 58, 489–496 (2016). https://doi.org/10.1007/s12033-016-9945-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9945-y

Keywords

Navigation