Skip to main content

Advertisement

Log in

Biochemical Characterization, Molecular Cloning, and Structural Modeling of an Interesting β-1,4-Glucanase from Sclerotinia Sclerotiorum

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous fungus Sclerotinia sclerotiorum produces a complete set of cellulolytic enzymes needed for efficient solubilization of native cellulose, the major component of plants. In this work, we reported the molecular characterization of an important glycosyl-hydrolase enzyme classified as endo-β-1,4-glucanase. The importance of this enzyme was revealed with the in-gel activity staining, showing a high degradation capacity of cellulose. When purified from native gel and ran in denaturing polyacrylamide gel, the polypeptide has an apparent molecular mass of about 34 kDa called Endo2. For further characterization of this protein, a mass spectrometry approach was carried out. The LC–MS/MS analysis revealed two peptides belonging to this enzyme. The genomic DNA and cDNA sequences were resolved by PCR amplification and sequencing, revealing a gene with two intron sequences. The open reading frame of 987 bp encoded a putative polypeptide of 328 amino acids having a calculated molecular mass of 33,297 Da. Yet, the molecular modeling and comparative investigation of different 3D cellulase structures showed that this endoglucanase isoform has probably two domains. A core domain having a high similarity with endoglucanases family 5 and a cellulose-binding domain having similarities with those of exo-type cellulases of family 1, linked together by a serine-threonine-rich region. These results are with great interests and show new characteristics of S. sclerotiorum glucanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhat, M. K., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15, 583–620.

    Article  CAS  Google Scholar 

  2. Clarke, A. J. (1997). Biodegradation of Cellulose: Enzymology and Biotechnology. Lancaster, PA: Technomic Publishing Company Inc.

    Google Scholar 

  3. Ghosh, B. K., & Gosh, A. (1992). Degradation of cellulose by fungal cellulase. In G. Winkelmann (Ed.), Microbial degradation of natural products (pp. 84–116). New York: VCH Publisher Inc.

    Google Scholar 

  4. Beguin, P., & Aubert, J. P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews, 13, 25–58.

    Article  CAS  Google Scholar 

  5. Lynd, L. R., Paul, J., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  6. Dienes, D., Egyhazi, A., & Reczey, K. (2004). Treatment of recycled fiber with Trichoderma cellulases. Industrial Crops and Products, 20, 11–21.

    Article  CAS  Google Scholar 

  7. Duan, X. Y., Liu, S. Y., Zhang, W. C., Zhang, Q. X., & Gao, P. J. (2004). Volumetric productivity improvement for endogulcanase of Trichoderma pseudokoingii S-38. Journal of Applied Microbiology, 96, 772–776.

    Article  CAS  Google Scholar 

  8. Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C., & Warren, R. A. J. (1991). Domains in microbial beta-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiological Reviews, 55, 303–315.

    CAS  Google Scholar 

  9. Burton, J., Wood, S. G., Pedyczak, A., & Siemieon, I. Z. (1989). Conformational preferences of sequential fragments of the hinge region of human IgA1 immunoglobulin molecule: II. Biophysical Chemistry, 33, 39–45.

    Article  CAS  Google Scholar 

  10. Bushuev, V. N., Gudkov, A. T., Liljas, A., & Sepetov, N. F. (1989). The flexible region of protein L12 from bacterial ribosomes studied by proton nuclear magnetic resonance. Journal of Biological Chemistry, 264, 4498–4505.

    CAS  Google Scholar 

  11. Parry, N. J., Beever, D. E., Owen, E., Nerinck, W., Claeyssens, M., Beeumen, J. V., et al. (2002). Biochemical characterization and mode of action of a thermostable endoglucanase purified from Thermoascus aurantiacus. Archives of Biochemistry and Biophysics, 404, 243–253.

    Article  CAS  Google Scholar 

  12. Ooi, T., Shinmyo, A., Okada, H., Murao, S., Kawaguchi, T., & Arai, M. (1990). Complete nucleotide sequence of a gene coding for Aspergillus aculeatus cellulase (F1-CMCase). Nucleic Acids Research, 18, 58–84.

    Article  Google Scholar 

  13. Sakamoto, S., Tamura, G., Ito, K., Ishikawa, T., Iwano, K., & Nishiya, N. (1995). Cloning and sequencing of cellulase cDNA from Aspergillus kawachii and its expression in Saccharomyces cerevisiae. Current Genetics, 27, 435–439.

    Article  CAS  Google Scholar 

  14. Hong, J., Hisanori, T., Shunichi, A., Yamamtot, K., & Kumagai, H. (2001). Cloning of a gene encoding a highly stable endo-β-1, 4-glucanase from Aspergillus niger and its expression in yeast. Journal of Bioscience and Bioengineering, 92, 434–439.

    CAS  Google Scholar 

  15. Sheppard, P. O., Grant, F. J., Oort, P. J., Sprecher, C. A., Foster, D. C., Hagen, F. S., et al. (1994). The use of conserved cellulase family-specific sequences to clone cellulase homologue cDNAs from Fusarium oxysporum. Gene, 150, 163–167.

    Article  CAS  Google Scholar 

  16. Shuyan, L., Xinyuan, D., Xuemei, L., & Peiji, G. (2006). A novel thermophilic endoglucanase from a mesophilic fungus Fusarium oxysporum. Chinese Science Bulletin, 51, 191–197.

    Article  Google Scholar 

  17. Saloheimo, A., Henrissat, B., Hoffren, A. M., Teleman, O., & Penttila, M. (1994). A novel small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Molecular Microbiology, 13, 219–228.

    Article  CAS  Google Scholar 

  18. Bhat, M. K. (2004). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383.

    Article  Google Scholar 

  19. Purdy, L. H. (1979). Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69, 875–880.

    Article  Google Scholar 

  20. Lumsden, R. D. (1979). Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia species. Phytopathology, 69, 890–896.

    Article  Google Scholar 

  21. Lumdsen, R. D. (1969). Sclerotinia sclerotiorum infection of bean and the production of cellulase. Phytopathology, 59, 653–657.

    Google Scholar 

  22. Montenecourt, B. S., & Eveleigh, D. E. (1985). Fungal carbohydrases: Amylases and cellulases. In J. N. Bennett & L. L. Lasure (Eds.), Gene manipulations in fungi (pp. 491–509). Orlando, FL: Academic Press.

  23. Smaali, M. I., Gargouri, M., Limam, F., Fattouch, S., Maugard, T., Legoy, M. D., et al. (2003). Production, purification and biochemical characterization of two β-glucosidases from Sclerotinia sclerotiorum. Applied Biochemistry and Biotechnology, 111, 29–40.

    Article  Google Scholar 

  24. Ellouze, O., Mejri, M., Smaali, M. I., Limam, F., & Marzouki, M. N. (2007). Induction, properties and application of xylanase activity from Sclerotinia sclerotiorum fungus. Journal of Food Biochemistry, 31, 96–107.

    Article  Google Scholar 

  25. Gargouri, M., Smaali, M. I., Maugard, T., Legoy, M. D., & Marzouki, M. N. (2004). Fungus β-glycosidases: immobilization and use in alkyl-β-glycoside synthesis. Journal of Molecular Catalysis B, 29, 89–94.

    Article  CAS  Google Scholar 

  26. Mandels, M., & Weber, J. (1969). The production of cellulases. Advances in Chemistry Series, 95, 391–414.

    Article  CAS  Google Scholar 

  27. Miller, G. L. (1959). Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  28. Laemmli, U. K., Molbert, E., Showe, M., & Kelenberger, E. (1970). Form-determining function of genes required for the assembly of the head of bacteriophage T4. Journal of Molecular Biology, 49, 99–113.

    Article  CAS  Google Scholar 

  29. Ellouz, C. S., Mechichi, T., Limam, F., & Marzouki, M. N. (2005). Purification and characterization of two low molecular weight endoglucanases produced by Penicillium occitanis mutant pol 6. Applied Biochemistry and Biotechnology, 125, 99–112.

    Article  Google Scholar 

  30. Blum, H., Beier, H., & Gross, B. (1987). Improved silver staining of plant proteins RNA and DNA in polyacrylamide gels. Electrophoresis, 8, 93–99.

    Article  CAS  Google Scholar 

  31. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory mammal. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  32. Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res., 16(22), 10881–10890.

    Article  CAS  Google Scholar 

  33. Gouet, P., Robert, X., & Courcelle, E. (2003). ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Research, 31, 3320–3323.

    Article  CAS  Google Scholar 

  34. Nielsen, H., Engelbrecht, J., Brunak, S., & Von Heijne, G. (1997). A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. International Journal of Neural Systems, 8, 581–599.

    Article  CAS  Google Scholar 

  35. Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modelling server. Nucleic Acids Research, 31, 3381–3385.

    Article  CAS  Google Scholar 

  36. DeLano, W. L. (2002). The PyMOL molecular graphics system. San Carlos, CA: DeLano scientific.

    Google Scholar 

  37. Kubicek, C. P., Messner, R., Gruber, F., Mach, R. L., & Kubicek, P. E. M. (1993). The Trichoderma reesei cellulase regulatory puzzle from the interior of a secretory fungus. Enyzme and Microbial Technology, 15, 90–99.

    Article  CAS  Google Scholar 

  38. Tangnu, K. S., Blanch, H. W., & Wilke, C. R. (1981). Enhanced production of cellulase, hemicellulase, and beta-glucosidase by Trichoderma reesei (Rut C-30). Biotechnology and Bioengineering, 23, 1837–1849.

    Article  CAS  Google Scholar 

  39. Ryu, D. D., & Mandels, M. (1980). Cellulases: biosynthesis and applications. Enyzme and Microbial Technology, 2, 91–102.

    Article  CAS  Google Scholar 

  40. Manheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Physiology and enzymes of thermophilic fungi. Microbiology and Molecular Biology Reviews, 64, 461–488.

    Article  Google Scholar 

  41. Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostablility. Microbiology and Molecular Biology Reviews, 65, 1–43.

    Article  CAS  Google Scholar 

  42. Matsumoto, K., Endo, Y., Tamiya, N., Kano, M., Miyauchi, K., & Abe, J. (1974). Studies on cellulase produced by the phytopathogens: purification and enzymatic properties of cellulase of Fusarium moniliforme. Journal of Biochemistry, 76, 563–572.

    CAS  Google Scholar 

  43. Bennett, J. W., & Lasure, L. L. (1991). Growth media. In J. W. Bennett & L. L. Law-e (Eds.), More Gene Manipulations in Fungi (pp. 441–458). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  44. Bhat, K. M., Mc Crae, S. I., & Wood, T. M. (1989). The endo-(1-4)-β-D-glucanase system of Penicillium pinophilum cellulase: isolation, purification and characterisation of five major endoglucanase components. Carbohydrate Research, 190, 279–297.

    Article  CAS  Google Scholar 

  45. Gilbert, H. J., & Hazlewood, G. P. (1993). Bacterial cellulases and xylanases. Journal of General Microbiology, 139, 187–194.

    Article  CAS  Google Scholar 

  46. Coughlan, M. P., & Ljungdahl, L. G. (1988). Comparative biochemistry of fungal and bacterial cellulolytic enzyme systems. In J. P. Aubert, P. Beguin, & J. Millet (Eds.), Biochemistry and Genetics of Cellulose Degradation (pp. 11–30). London: Academic Press.

    Google Scholar 

  47. Bhat, K. M., Gaikwad, J. S., & Maheshwari, R. (1993). Purification and characterisation of an extracellular β-glucosidase from the thermophilic fungus Sporotrichum thermophile and its influence on cellulase activity. Journal of General Microbiology, 139, 2825–2832.

    Article  CAS  Google Scholar 

  48. Divne, C., Ståhlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles, J. K. C., et al. (1994). The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science, 265, 524–528.

    Article  CAS  Google Scholar 

  49. Henrissat, B., Teeri, T. T., & Warren, R. A. J. (1998). A scheme for designating enzymes that hydrolyze the polysaccharides in the cell walls of plants. FEBS Letters, 425, 352–354.

    Article  CAS  Google Scholar 

  50. Henrissat, B. (1998). Enzymatic cellulose degradation. Cellulose Communication, 5, 84–90.

    CAS  Google Scholar 

  51. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL Workspace: A web based environment for protein structure homology modeling. Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  52. Davies, G. J., Dodson, G., Moore, M. H., Tolley, S. P., Dauter, Z., Wilson, K. S., et al. (1993). Structure determination and refinement of the Humicola insolens endoglucanase V at 1.5 Å resolution. Acta Crystallographica, 52, 7–17.

    Google Scholar 

  53. Davies, G. J., Tollay, S. P., Henrissat, B., Hjort, C., & Schulein, M. (1995). Structures of oligosaccharide bound forms of the endoglucanase V from Humicola insolens at 1.9 Å resolution. Biochemistry, 34, 16210–16220.

    Article  CAS  Google Scholar 

  54. Davies, G. J., Dadson, G. G., Hubbart, R. E., Tolley, S. P., Dauter, Z., Wilson, K. S., et al. (1996). Structure and function of endoglucanase V. Nature, 365, 362–364.

    Article  Google Scholar 

  55. Kleywegt, G. J., Zou, J. Y., Divne, C., Davies, G. J., Sinning, I., Stahlberg, J., et al. (1997). The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes. Journal of Molecular Biology, 272, 383–397.

    Article  CAS  Google Scholar 

  56. Sandgren, M., Shaw, A., Ropp, T. H., Wu, S., Bott, R., Cameron, A. D., et al. (2000). The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 Å resolution. Journal of Molecular Biology, 308, 295–310.

    Article  Google Scholar 

  57. Srisodsuk, M., Rainikainen, T., Panttila, M., & Teeri, T. T. (1993). Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. Journal of Biological Chemistry, 268, 20756–20761.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Thierry JOUENNE, director of the Laboratory of Polymers, Biopolymers and Surfaces in Rouen for providing the access to make mass spectrometry analysis and helpful discussions. This work is entirely financed by the Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB) in the National Institute of Applied Sciences and Technology of Tunis, University of Carthage. The Tunisian Ministry of High Education, Scientific Research and Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymen Ezzine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12033_2013_9714_MOESM1_ESM.docx

Collected data for mass spectrometry analysis. Raw data files were processed using Proteome Discoverer 1.3 software (Thermo Scientific). Peak lists were searched using the MASCOT search engine (Matrix Science). (DOCX 1,426 kb)

12033_2013_9714_MOESM2_ESM.docx

cDNA and genomic DNA sequences of the Endo2 β-1,4-endoglucanase of S. sclerotiorum. Introns are shown with silver background. Arrows indicates primers localization. (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chahed, H., Ezzine, A., Mlouka, A.B. et al. Biochemical Characterization, Molecular Cloning, and Structural Modeling of an Interesting β-1,4-Glucanase from Sclerotinia Sclerotiorum . Mol Biotechnol 56, 340–350 (2014). https://doi.org/10.1007/s12033-013-9714-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9714-0

Keywords

Navigation