Skip to main content

Advertisement

Log in

First Knockdown Gene Expression in Bat (Hipposideros armiger) Brain Mediated by Lentivirus

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lentivirus-mediated RNA interference (RNAi) is a potent experimental tool for investigating gene functions in vitro and in vivo. It has advantages that transgenic technology lacks. However, in vivo applications are difficult to apply in the central nervous system of non-model organisms due to the lack of a standard brain atlas and genetic information. Here, we report the development of an in vivo gene delivery system used in bat brain tissue for the first time, based on lentivirus (LV) vectors expressing short hairpin RNA (shRNA) targeting Hipposideros armiger forkhead box P2 (FoxP2). In vitro transfection into HEK 293T cell with the vector bearing the cassettes encoding FoxP2 shRNA verified the knockdown efficiency. Pseudovirus particles were administered via stereotactic intracerebral microinjection into the anterior cingulate cortex of H. armiger. FoxP2 is of major interest because of its role in sensorimotor coordination and probably in echolocation. Subsequent in situ hybridization validated the in vivo silencing of the target gene. This report demonstrates that LV-mediated expression of RNAi could achieve effective gene silencing in bats, a non-model organism, and will assist in elucidating the functions of bat genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meister, G., & Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature, 431, 343–349.

    Article  CAS  Google Scholar 

  2. Silva, J. M., Mizuno, H., Brady, A., Lucito, R., & Hannon, G. J. (2004). RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proceedings of National Academy of Sciences of the United States of America, 101, 6548–6552.

    Article  CAS  Google Scholar 

  3. Hannon, G. J., & Rossi, J. J. (2004). Unlocking the potential of the human genome with RNA interference. Nature, 431, 371–378.

    Article  CAS  Google Scholar 

  4. Paul, C. P., Good, P. D., Winer, I., & Engelke, D. R. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnology, 20, 505–508.

    Article  CAS  Google Scholar 

  5. Sharp, P. A. (1999). RNAi and double-strand RNA. Genes & Development, 13, 139–141.

    Article  CAS  Google Scholar 

  6. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., & Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199–208.

    Article  CAS  Google Scholar 

  7. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P., & Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Development, 13, 3191–3197.

    Article  CAS  Google Scholar 

  8. Castanotto, D., & Rossi, J. J. (2009). The promises and pitfalls of RNA-interference-based therapeutics. Nature, 457, 426–433.

    Article  CAS  Google Scholar 

  9. Brummelkamp, T. R., Bernards, R., & Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553.

    Article  CAS  Google Scholar 

  10. Sui, G., Soohoo, C., el Affar, B., Gay, F., Shi, Y., & Forrester, W. C. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proceedings of National Academy of Sciences of the United States of America, 99, 5515–5520.

    Article  CAS  Google Scholar 

  11. Konuma, T., Morooka, N., Nagasawa, H., & Nagata, S. (2012). Knockdown of the adipokinetic hormone receptor increases feeding frequency in the two-spotted cricket Gryllus bimaculatus. Endocrinology, 153, 3111–3122.

    Article  CAS  Google Scholar 

  12. Haesler, S., Rochefort, C., Georgi, B., Licznerski, P., Osten, P., & Scharff, C. (2007). Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus area X. PLoS Biology, 5, e321.

    Article  Google Scholar 

  13. Wilson, D. E., & Reeder, D. M. (2005). Mammal species of the world: a taxonomic and geographic reference (3rd ed.). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  14. Li, G., Wang, J., Rossiter, S. J., Jones, G., Cotton, J. A., & Zhang, S. (2008). The hearing gene Prestin reunites echolocating bats. Proceedings of National Academy of Sciences of the United States of America, 105, 13959–13964.

    Article  CAS  Google Scholar 

  15. Liu, Y., Xu, H., Yuan, X., Rossiter, S. J., & Zhang, S. (2012). Multiple adaptive losses of alanine-glyoxylate aminotransferase mitochondrial targeting in fruit-eating bats. Molecular Biology and Evolution, 29, 1507–1511.

    Article  CAS  Google Scholar 

  16. Li, G., Wang, J., Rossiter, S. J., Jones, G., & Zhang, S. (2007). Accelerated FoxP2 evolution in echolocating bats. PLoS one, 2, e900.

    Article  Google Scholar 

  17. Fisher, S. E., Lai, C. S., & Monaco, A. P. (2003). Deciphering the genetic basis of speech and language disorders. Annual Review of Neuroscience, 26, 57–80.

    Article  CAS  Google Scholar 

  18. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.

    Article  CAS  Google Scholar 

  19. Shu, W., Cho, J. Y., Jiang, Y., Zhang, M., Weisz, D., Elder, G. A., et al. (2005). Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proceedings of National Academy of Sciences of the United States of America, 102, 9643–9648.

    Article  CAS  Google Scholar 

  20. Fujita, E., Tanabe, Y., Shiota, A., Ueda, M., Suwa, K., Momoi, M. Y., et al. (2008). Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proceedings of National Academy of Sciences of the United States of America, 105, 3117–3122.

    Article  CAS  Google Scholar 

  21. Gaub, S., Groszer, M., Fisher, S. E., & Ehret, G. (2010). The structure of innate vocalizations in Foxp2-deficient mouse pups. Genes, Brain and Behavior, 9, 390–401.

    Article  CAS  Google Scholar 

  22. Allman, J. M., Hakeem, A., Erwin, J. M., Nimchinsky, E., & Hof, P. (2001). The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Annals of the New York Academy of Sciences, 935, 107–117.

    Article  CAS  Google Scholar 

  23. Paus, T. (2001). Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2, 417–424.

    Article  CAS  Google Scholar 

  24. Van den Haute, C., Eggermont, K., Nuttin, B., Debyser, Z., & Baekelandt, V. (2003). Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain. Human Gene Therapy, 14, 1799–1807.

    Article  Google Scholar 

  25. Hommel, J. D., Sears, R. M., Georgescu, D., Simmons, D. L., & DiLeone, R. J. (2003). Local gene knockdown in the brain using viral-mediated RNA interference. Nature Medicine, 9, 1539–1544.

    Article  CAS  Google Scholar 

  26. Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25, 166–177.

    Article  CAS  Google Scholar 

  27. Wei, F., Xia, X. M., Tang, J., Ao, H., Ko, S., Liauw, J., et al. (2003). Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: A microelectroporation study in adult rodents. Journal of Neuroscience, 23, 8402–8409.

    CAS  Google Scholar 

  28. Olthoff, A., Baudewig, J., Kruse, E., & Dechent, P. (2008). Cortical sensorimotor control in vocalization: a functional magnetic resonance imaging study. Laryngoscope, 118, 2091–2096.

    Article  Google Scholar 

  29. Kondo, H. M., & Kashino, M. (2007). Neural mechanisms of auditory awareness underlying verbal transformations. Neuroimage, 36, 123–130.

    Article  Google Scholar 

  30. Rubens, A. B. (1975). Aphasia with infarction in the territory of the anterior cerebral artery. Cortex, 11, 239–250.

    CAS  Google Scholar 

  31. Jurgens, U., & von Cramon, D. (1982). On the role of the anterior cingulate cortex in phonation: a case report. Brain and Language, 15, 234–248.

    Article  CAS  Google Scholar 

  32. Sutton, D., Larson, C., & Lindeman, R. C. (1974). Neocortical and limbic lesion effects on primate phonation. Brain Research, 71, 61–75.

    Article  CAS  Google Scholar 

  33. White, S. A. (2010). Genes and vocal learning. Brain and Language, 115, 21–28.

    Article  Google Scholar 

  34. Salahpour, A., Medvedev, I. O., Beaulieu, J. M., Gainetdinov, R. R., & Caron, M. G. (2007). Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biological Psychiatry, 61, 65–69.

    Article  CAS  Google Scholar 

  35. Dykxhoorn, D. M., & Lieberman, J. (2005). The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annual Review of Medicine, 56, 401–423.

    Article  CAS  Google Scholar 

  36. Hickman-Davis, J. M., & Davis, I. C. (2006). Transgenic mice. Paediatric Respiratory Reviews, 7, 49–53.

    Article  Google Scholar 

  37. Godecke, A., Flogel, U., Zanger, K., Ding, Z., Hirchenhain, J., Decking, U. K., et al. (1999). Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proceedings of National Academy of Sciences of the United States of America, 96, 10495–10500.

    Article  CAS  Google Scholar 

  38. Vernes, S. C., Nicod, J., Elahi, F. M., Coventry, J. A., Kenny, N., Coupe, A. M., et al. (2006). Functional genetic analysis of mutations implicated in a human speech and language disorder. Human Molecular Genetics, 15, 3154–3167.

    Article  CAS  Google Scholar 

  39. Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., et al. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnology, 21, 635–637.

    Article  CAS  Google Scholar 

  40. Birmingham, A., Anderson, E. M., Reynolds, A., Ilsley-Tyree, D., Leake, D., Fedorov, Y., et al. (2006). 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods, 3, 199–204.

    Article  CAS  Google Scholar 

  41. Qiu, S., Adema, C. M., & Lane, T. (2005). A computational study of off-target effects of RNA interference. Nucleic Acids Research, 33, 1834–1847.

    Article  CAS  Google Scholar 

  42. Martin, S. E., & Caplen, N. J. (2007). Applications of RNA interference in mammalian systems. Annual Review of Genomics and Human Genetics, 8, 81–108.

    Article  CAS  Google Scholar 

  43. Sun Y., Yin J., Ma J., Xuan, F., Chen Q., Hu K., Mei B., Zhang S., Metzner W. FoxP2 affects complex vocal behavior of echolocating bats (Submitted).

Download references

Acknowledgments

We thank Chia-Yi Hou from Ecohealth Alliance for improving the English writing of the original manuscript. This study was supported by the National Natural Science Foundation of China (No. 31101641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Sun.

Additional information

Qi Chen and Tengteng Zhu contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Zhu, T., Jones, G. et al. First Knockdown Gene Expression in Bat (Hipposideros armiger) Brain Mediated by Lentivirus. Mol Biotechnol 54, 564–571 (2013). https://doi.org/10.1007/s12033-012-9596-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9596-6

Keywords

Navigation